Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Методика не позволяет определять основную частоту с достаточной точностью

В опционально изготавливается производителем 9Датчик перемещения IA5-18GM-I3Pepperl+FuchsДиапазон измерения: 2. Однако спектр необходимых для учебных лабораторий специальных устройств и программ столь широк, что далеко не все потребности в оснащении университетов могут быть удовлетворены имеющейся на рынке продукцией.

МА, а АЦП воспринимает данные в диапазоне 0. Выражаем признательность Представительству "National Instruments" в Российской Федерации за поддержку. Аналоговый сигнал с датчика поступает на модуль согласования, наличие которого продиктовано необходимостью приведения сигналов с датчиков к уровню и наименованию сигнала, на котором работает плата АЦП например, с датчика выходит токовый сигнал в диапазоне 0. Самым простым способом передачи информации о ситуации риска является таблица платежей или платежная матрица табл. Для этих целей авторами был создан лабораторный автоматизированный стенд формирования электромагнитного поля. Весьма актуальной задачей является разработка объективной методики массового контроля качества музыкальных инструментов, которая может быть реализована в среде образовательных учреждений на базе доступных аппаратных средств. Экспериментальная установка по исследованию механических соединений представляет собой различные виды модельных соединений шпоночное, клеммовое, соединение с натягом, заклепочное, сварное и резьбовое и нагрузочное устройство.

Быстрое развитие и внедрение средств прикладного программирования, позволяющих проектировать компьютерные информационно-измерительные системы «под задачу», используя обширные встроенные библиотеки подпрограмм. Методика измерения основных параметров на этих установках предполагает использование первичных преобразователей механического типа и ручной сбор информации. Однако тенденция в развитии методов локальной диагностики, как наукоёмких технологий, отчётливо прослеживается все последние годы.

Элементарный акт хрупкого разрушения металла - скол одного зерна или одной его границы, разрыв волокна композита. Более того, скорость ветра в этих методиках предполагается постоянной как по величине, так и по направлению см. Методика выполнения лабораторной работы «Имитационное моделирование суммарной погрешности измерительных каналов» в среде Lab VIEW заключается в следующем. Технологии миниатюрных высокочувствительных датчиков механических, электрических, акустических, химических, оптических и других параметров сделали методы локальных испытаний по нестандартным схемам надёжным инструментом экспериментального материаловедения. Более низкий порядок спектрограммы Габора имеет меньшую степень взаимное влияния спектральных компонентов, но более низкое разрешение. Для повышения достоверности измерений кинетики КРН компьютерная система проектировалась в LabVIEW как многоканальная, с параллельной регистрацией АЭ. Исходя из трудностей регистрации пульсовой волны, исследования проводились до и после воздействия звуков инструмента на интервале времени - 1 час. ГОСТ 24461-80 СТ СЭВ 1656-79. Перспективы внедрения и развития решения Внедрение современных прикладных информационных технологий открывает возможность создания компьютерных средств обучения с элементами математического моделирования, графики, звука, мультимедиа и моделирования сложных систем измерения и управления.

Этот сервер позволяет пользователю используя технологию CGI получить доступ к текущим и архивированным измерениям АЭ. Наметилась методика оценки индивидуального воздействия игры на блок-флейтах, как на дыхательную систему, так и на энергетическое состояние человека. Методика микроволнового исследования по измерению интенсивности отраженной от кучи СВЧ мощности в дальней зоне. Поэтому в мощных преобразователях применяется групповое последовательное, параллельное и последовательно-параллельное включение СПП. Постановка задачи Процесс принятия решений занимает одно из ведущих мест в структуре человеческой деятельности. Разделение потоков импульсов от этих источников возможно, если оно заранее отработано и заложено в алгоритмы цифровой обработки сигналов, например, реализованных в LabVIEW. Использование технологий National Instruments позволяет легко модифицировать ВСППР в психологический виртуальный стенд, позволяющий исследовать особенности человеческой системы переработки информации. Только в современном быстро меняющемся мире резко возросла нагрузка на человеческую систему переработки информации. Тепловой процесс при варке колбасной продукции вареные колбасы, сосиски, сардельки считается завершенным, когда температура внутри батона достигает 70 градусов Цельсия.

Информация о состоянии СПП собирается АЦП с двух датчиков тока и напряжения, и одного или двух датчиков температуры корпуса прибора. В данном случае создается 6 каналов: 2 для измерения шумового напряжения и 4 для измерения температуры при помощи термометра сопротивления. Оценка психологического воздействия звуков инструмента были проведена путем регистрации пульсовой волны по разработанным методикам В. Методика получения матрицы из одной пульс волны существует пока только теоретически. Работа программы в режиме калибровки. В перспективе предполагается разработка учебных тренажеров в комплексе с модельными стендами, на которых реализуется исследуемый процесс.

Управляющая программа осуществляет расчет затухания с использованием всех поступающих данных. Эта же методика позволила выделить стадию перехода к активному зернограничному разрушению металла и проследить влияние на эти параметры КРН структурных факторов. Везде использовался режим измерений " Finite Samples ". Лицевая панель ВП испытательно-измерительного комплексе вкладка с представлением ВАХ испытуемого диода КД2969 при различных температурах полупроводниковой структуры Внедрение и развитие решения Разработанный способ определения RthjC и комплекс аппаратуры применим для диодов, тиристоров и симисторов в корпусном исполнении на токи от 1 А до 3200 А.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................