Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Стабилизированный источник питания

Таким образом, предпочтительным является вариант, при котором студенты сначала тренируются работать на так называемом виртуальном тренажере лабораторной установки и только после приобретения определенного навыка смогут получить доступ к управлению реальным лабораторным стендом. Авторами рассматривается одна из таких задач - исследование аппаратной части измерительного комплекса для исследования параметров электрических цепей, в частности, оценка погрешности преобразования сопротивления электрической цепи в напряжение при помощи измерительной схемы ИС, построенной на операционном усилителе ОУ. Аналогично предыдущему блоку, с помощью клавиш "Измер. В систему заводится информация о требуемой излучаемой оптической мощности, которая зависит от тока I, протекающего через активный элемент, и производится корректировка управляющего напряжения системой термокомпенсации. Частотные характеристики однозвенных RC-цепей. Если Вы работаете с компьютером, сигнал на вход исследуемой цепи нужно подавать с гнезд "Ген" на верхней панели стенда, а измеряемый сигнал с выхода цепи должен подаваться на гнезда "Изм" на верхней панели. А,б: 1 восьмиканальный формирователь импульсных последовательностей с цифровым управлением далее - формирователь; 2 четырехканальный цифровой усилитель мощности импульсных последовательностей далее - усилитель пачек импульсов; 3 шестиканальный усилитель мощности одиночных импульсов далее - усилитель импульсов; 4 восьмиканальный широкополосный усилитель с плавной регулировкой усиления далее - широкополосный усилитель; 5 четырехканальный усилитель - квадратурный преобразователь с цифровой регулировкой усиления далее - усилитель - квадратурный преобразователь; 6 импульсный источник питания с цифровым управлением далее - источник питания. Для увеличения отношения сигнал/шум на входе усилителя предусмотрено включение полосовых фильтров, согласованных по полосе пропускания и импедансу с используемыми датчиками. Интенсивности всех точек, изображенные на эхограмме согласно шкале цветов, которые попадают в эталонную полосу, включая и ее граничные точки, суммировались, образуя некоторую величину Cumsum, которая и принималась за значение корреляционной функции.

На рисунке 1 изображен общий случай схемы электрической части модели. Возможна подача внешнего опорного сигнала, например - с усилителя пачек импульсов см.

Математики, алгоритмисты и программисты хорошо поработали, но пока не дали быстрых, эффективных и универсальных алгоритмов для решения любых задач. Промышленная аппаратура для прогноза разрушения конструкций должна накапливать амплитуды первичных импульсов трещин, отличая их от реверберации, газо- и твердожидкостных шумов и ударов, трения и вибраций конструкции и т. Указывается ссылка на файл, содержащий массив отсчетов опорного напряжения инструкция FSTIM; б полученная осциллограмма импульсного сигнала аппроксимируется кусочно-линейной функцией PWL с указанием координат точек < tn, yn >, либо с указанием имени файла, из которого читаются координаты точек; в полученная осциллограмма импульсного сигнала аппроксимируется степенным многочленом или набором других, например, линейных, экспоненциальных, гармонических функций с определением скорости нарастания напряжения на его линейном участке, постоянной времени на экспоненциальном участке, частоты, амплитуды и постоянной времени затухания на колебательном участке переходного процесса; модель строится с помощью нелинейного источника напряжения, управляемого суммой напряжений независимых источников напряжения требуемой формы.

Обработка и представление результатов эксперимента. Стенд позволяет проводить следующие лабораторные работы. Перед началом работы с источником необходимо выбрать СОМ порт, с которым соединён PSP, затем нажать кнопку «Соединиться с PSP».

Таблица 1 Показатели качества, характеризующие предпочтения ЛПР φ1. Использование современных коммуникационных возможностей приобретаемого лабораторного оборудования и встраиваемого оборудования NI позволяет реализовать проведение учебных практических занятий в режиме удаленного доступа при постановке сложного натурного физического эксперимента. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления RRR сверхпроводников 1. Хотя регистрируемый сигнал АЭ есть интегральная свертка этого импульса с динамической функцией Грина объекта и передаточной функцией измерительного тракта, можно выделить первичный импульс АЭ и по нему оценить размер одиночной трещины. На стенде применено наборное поле фирмы Wisher Enterprise Co, контакты которого рассчитаны более чем на 10000 коммутаций.

Этим обуславливаются участки с начальными и конечными температурными выбросами. Затем по этим данным строят Р - h диаграмму «усилие внедрения»-«глубина погружения», аналогичную по смыслу традиционной диаграмме 7 -£. Дальнейшее развитие аппаратных и программных средств компьютерных систем измерений требует рассмотрения ограничений, при которых АЭ может отображать процесс разрушения с точностью, необходимой для прикладных применений в лабораторных исследованиях и на производстве Ханжин В. Соединительные проводники и запасные детали. Все встроенные узлы стенда питаются от внутреннего источника питания, напряжение на них подается при горящих индикаторных светодиодах «+5 В», «-15 В», «+15 В». Описание решения При симуляции сигнала приемника его амплитуда, фаза и частота модулируются при помощи генераторов случайных чисел, при этом глубина модуляции относительно опорных значений этих величин выбирается, исходя из вышеуказанных характеристик РЛС. Источник имеет следующие технические характеристики: ; напряжения питания источника - +24 В; ; выходные напряжения - от ±45 В до ±200 В; двухполярный режим; ; выходные напряжения - от 90 В до 400 В; однополярный режим; ; шаг регулировки -1 В; ; выходная мощность - не менее 40 Вт. Рисунок 3 - Вид передней панели в LabVIEW На передней панели располагаются элементы управления и отображения результатов эксперимента: источник сигнала, панель вольтметра, магазин сопротивлений. Так и программные особенности виртуальных инструментов визуальные инструменты, функции, процедуры, способы взаимодействия инструментов. На ней расположены: · наборное поле, на котором с помощью сменных деталей собирают исследуемую электронную схему; · кнопки «Вкл» и «Выкл», с помощью которых включается и выключается напряжение питания всех узлов, расположенных на верхней панели стенда; · гнезда для вывода напряжений +5 В, ±15 В для питания исследуемых устройств; · гнезда «Ген», к которым подводится сформированный компьютером сигнал; максимальная амплитуда сигнала – 10 В; выходное сопротивление источника сигнала – 5 Ом. Можно применить универсальные языки программирования типа Pascal, C++, но тогда трудоемкость программирования интерфейса системного аналитика с моделью превысит трудоемкость программирования самой модели в 5-10 раз. Механические свойства большинства материалов испытывают значительные изменения в субмикронных масштабах, особенно сильные в областях с характерными размерами L ≤ 100 нм.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................