Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Модельно-измерительный комплекс на основе среды моделирования МАРС и пакета LabVIEW // Приборы и системы

Использование виртуальных инструментов LabVIEW, - М: Радио связь, 1999 г 4. Вместо платформы PXI применены традиционные приборы с интерфейсом GPIB: генератор; вольтметр контроль мощности подводимой к магнитной антенне; вольтметр контроль напряженности поля в экранированной камере. Для проверки работы виртуального полярографа при помощи виртуальной модели был смоделирован двухкомпонентный раствор, в результате получены полярограммы в ХВАМ- и ПТ-режимах, показанные на рисунках 3 и 4. На самой форме сигнала в ближних периодах наблюдалось появление некоторых изменений формы.

Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе LabVIEW 7. Использование данной разработки фирмы National Instruments позволяет быстро создавать виртуальные приборы с большими возможностями для анализа и удобным для пользователя интерфейсом. Использование плат сбора данных с интерфейсом PCMCIA или USB с питанием через интерфейс позволяет сделать вариант установки для тестирования солнечных модулей и энергетических установок в полевых условиях. Блок-флейту всегда хранят в разобранном состоянии, т. Проверка на аномальность результатов, выявления грубых погрешностей и промахов параметрические критерии Ирвина, Кохрена. Показаны скриншоты ВП при измерении вольтамперных характеристик кремневой батареи, которая состоит из четырех монокристаллических элементов d=76 мм.

В этом положении скорость сближения резко уменьшается - начинается цикл поиска поверхности. Подпрограмма проверки однородности выборок по критерию Фишера 3. Минимальное значение амплитуды гармонического сигнала 5 мВ, максимальная частота 500 Гц, при этом fd должна быть не менее 5 кГц, а ∆KB, не менее 0,5 мВ. Потенциально высокая надёжность СПП гарантируется только при обеспечении оптимальных температурных и электрических режимах эксплуатации. При этом достигнуто существенное повышение производительность процесса испытания СПП, измерения и определения электрических и тепловых параметров. Далее формируется отчет о проделанной работе.

Хотя данная задача может быть решена различными путями, в наилучшей степени указанным требованиям удовлетворяет программная среда LabVIEW и технологии корпорации National Instruments. Поллак LabVIEW для новичков и специалистов Москва: Горячая линия - Телеком, 2004. Поэтому необходимо представить внутреннюю структуру вольтметра с возможностью просмотра значений и формы сигналов в некоторых заранее заданных контрольных точках. На каждой из вкладок используемого контейнера устанавливаются исходные системные параметры коммутатора и диапазон исследуемых значений аргумента, а в итоге строятся графики зависимостей вероятностей блокировки по методам Ли и Якобеуса и индицируются сопутствующие параметры. Реализованный комплект приборов, по нашему мнению, в большей степени удовлетворяет требованиям, предъявляемым к приборному обеспечению лабораторных практикумов для многих общетехнических дисциплин, чем комплект приборов, входящий в состав лабораторной станции ELVIS в таблице 1 выделены приборы КИВИП-2, которых нет в ELVIS. Для реализации виртуального полярографа необходимо: 1. Основные типы периодического сигнала - гармонический сигнал синусоида, прямоугольный сигнал меандр и пилообразный сигнал.

Таблица 3 Наименование проверкиПериодичность обслуживанияСодержание работ и метод их проведенияПриборы, инструменты и материалы, необходимые для проведения работ Ежегодная1 раз в годПроверить все характеристики на соответствие ТУ и в случае необходимости произвести настройкуГенераторы сигналов НЧ и ВЧ, вольтметр, осциллограф, ЛАТР 9. Данная работа является примером разработки виртуальных лабораторных работ по дисциплинам «Метрология, стандартизация и сертификация», «Технические средства измерений», «Технологические измерения и приборы» и других, где необходимо применение виртуальных приборов. Источники систематических и случайных погрешностей в наноиндентировании. Исходя из вышеизложенного, авторами была поставлена задача по созданию системы статистической обработки данных измерительного эксперимента, которая позволяла бы: определять параметры распределения входной величины, проверять согласие закона распределения полученных выборок с теоретически заданным, выполнять проверку на нормальность, однородность, кроме того, генерировать случайные числа с заданным законом распределения, сохранять промежуточные и окончательные результаты, используя в качестве источников данных текстовые файлы, первичные измерительные приборы и другие внешние устройства, работающие в режиме реального времени и связанные с компьютером посредством высокоскоростных интерфейсов передачи данных USB, PCI, PCIe, а также аналоговые сигналы с их последующей оцифровкой. Баумана развивается учебно-научное направление создания автоматизированных комплексов и технологий анализа жидких дисперсных сред на основе оптических методов: регистрации рассеянного излучения и обработки визуальных изображений. Измеритель состоит из компьютера платы ввода/вывода USB 6008 и преобразователя ток напряжение. При этом многие вузы выбирают в качестве основы лабораторных стендов продукцию корпорации National Instruments NI, позволяющую эффективно обучать решению задач, актуальных для различных областей науки, промышленности и образования. Величина напряжения регулируется с помощью кнопки и может изменяться от –10 В до +10 В с изменяющимся шагом 0,1 В или 0. Устройство управляется от компьютера через интерфейс USB. Существующие специализированные приборы не всегда позволяют обеспечить требуемое для решения практических задач соотношение быстродействия, точности и стоимости. Также система LabVIEW позволяет повысить наглядность демонстрируемых процессов.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................