Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Повторяющаяся процедура

Разработка метода определения параметров всплывающих газовых пузырьков по данным эхолокационного зондирования: Дипломная работа / Нижний Новгород, ННГУ, 2007 г. Поэтому было принято решение реализовать учебный стенд на двух вкладках. Система включает четыре подсистемы с программными модулями информационного и интеллектуального обеспечения, базами данных с физико-химическими показателями продуктов и таблицами планирования экспериментов, модулем статистической обработки результатов экспериментов, банком статистических моделей в виде уравнений регрессий, объединенных в обобщенные модели, а также модули многокритериальной и структурно-параметрической оптимизации с процедурами прогноза и диагноза состояния системы и оценкой качества продукта. Позиционирование образца в трех плоскостях осуществляется либо приводом на шаговых двигателях, либо пьезосканером с точностью не хуже 0,5 мкм. Как известно, для всех систем силового нанозондирования общим является обязательное наличие четырех основных узлов: нагружения индентора, регистрации его смещения, прецизионного позиционирования образца и компьютеризированного управления всеми основными процедурами рис. СВЧ-, конвекция тепловой обработки мясопродуктов с максимальным сохранением биологической и пищевой ценности.

Запускается процедура усреднения кнопкой на панели после завершения теста, так как операция сглаживания может существенно трансформировать исходную форму диаграммы нагружения особенно в области перехода от нагружения к разгрузке, и тем самым повлиять на результаты расчета как твердости, так и модуля Юнга. Они будут использованы для сравнения с данными эхограммы "А" и расширения диапазона глубин, в пределах которого можно проследить за поведением пузырьков. Пусть входной сигнал полигармонический Частота дискретизации Обозначим отношение частоты сигнала и частоты дискретизации где ΩM= INTΩ и ∆Ω - целая и дробная части отношения соответственно. Рис 9 Когда время обработки точки закончится прибор подаст звуковой сигнал если включен звук в настройках, в правом нижнем углу снова появится надпись START, а напротив слова Point появится номер следующей точки. Поэтому целью данной работы являлась разработка учебного стенда для исследования принципа действия универсального цифрового вольтметра.

Требуется только один программно управляемый физический эксперимент вместо множества экспериментов с ручными коммутациями и видоизменением схемы измерения; - повысить достоверность оценки шумовых параметров ОУ за счет возможности накопления и обработки измерительной информации за более продолжительное время наблюдения по сравнению с показывающими измерителями напряжения; - имеется возможность увеличения числа полос частот сверх определенных ГОСТом, в пределах которых определяются требуемые параметры, причем это обеспечивается программными средствами без дополнительных затрат; - записанная в виде файла реализация шумового сигнала ОУ может многократно использоваться для различных видов анализа, статистической обработки, сопоставления с результатами других экспериментов. Управление роботом ТУР-10 средствами LabVIEW 1. Выводы Описанный в данной работе стенд может быть использован при исследовании рабочих процессов двигателей внутреннего сгорания в динамических режимах в условиях эксплуатации. В качестве искомых параметров модели примем параметры a1м, a0м для которых ошибка ε минимальна. Ранее разработчики системы сбора данных затрачивали большое количество времени, определяя типы сигнала, подключения, уравнения преобразования и единицы измерения, применение современных информационных технологий устраняет вышеописанные недостатки и совершенствует работу системы в целом.

А - внешний вид волоконного спектрометра, используемого при измерениях, б - вид лицевой панели ВП, используемого при измерениях спектра излучения. Вид лицевой панели виртуального прибора ВП используемого в данном случае приведен на рисунке 1. Разработанные приборы построены по модульному принципу и могут содержать различные узлы и модули рис.

Описанная процедура была реализована в интерактивной программе «Echogram. Предполагается дальнейшее развитие решения в виде доработки виртуального макета путем внесения систематических и случайных, аддитивных и мультипликативных погрешностей в отдельные структурные блоки вольтметра.

Для диагностики плазмы можно также проводить измерения интенсивности излучения на гармониках кратных основной частоте излучения. Общим подходом при решении задачи выбора является поэтапное сужение исходного множества альтернатив. Процедура установки компонента RunTimeEngine подробно рассмотрена ниже. В частности, для диагностики лазерного импульса проводятся измерения качества фокусировки пучка и длительности импульса. Ниже представлены спектры этих сигналов. Более того, при выключении питания во время процедуры прибор мгновенно выключается и считает, что данная процедура успешно завершена даже в том случае, если воздействие производилось лишь на одну точку. Частота сигнала задается с помощью соответствующей ручки и поля ввода множителя частоты. Эта зависимость является результатом обобщения многочисленных экспериментальных наблюдений и теоретических расчетов.

В выражениях числовые характеристики переменного напряжения представляют собой усредненный интеграл на интервале интегрирования Т откуда видно, что для периодических сигналов адекватный результаты получают, если интервал интегрирования равен или кратен периоду подинтегральной функции. Для непрерывных сигналов и непрерывных вспомогательных функций эта процедура имеет вид: где У- результат измерения, T- время интегрирования, t0 - начальный момент времени, xt - измеряемый сигнал, φt - вспомогательная функция Вспомогательная функция в этом случае тождественно равна единице: Наиболее распространенными в измерительной технике являются такие характеристики сигнала xt: Среднее значение Средневыпрямленное значение Вспомогательная функция φt = 1 если xt>0, φt = -1 если xt < 0. Взаимодействие происходит в три этапа: установка соединения при помощи утилиты RoboTalk, отправка и прием данных при помощи утилит SetTagValue и GetTagValue и разрыв соединения. В последнем случае интегральное значение на m - количество подинтегралов ∆Tj интервала T находится путем суммирования вычисленных интегралов на подинтервалах ∆Tj интервала T. Y=yn,pyn Альтернативы ЛПРХ=x1φ11…φ1j…φ1n .

Клавиши, перелистывают по 10 программ. Горячая линия - Телеком, 2005.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................