Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Сигнал с детектора рентгеновского излучения поступал на цифровой осциллограф Nl PXI, где он оцифровывался и анализировался специальным программным обеспечением

При расчетах зависимостей необходимо учитывать, что в состав выражений для интенсивности нулевого порядка входит бесконечное число гармоник основной пространственной частоты Λ-1 и фазы этих гармоник зависят сложным образом от угла наклона и от расстояния между решетками. При срабатывании детектора разряда батареи периодический звуковой сигнал подключите аппарат к источнику питания. Определение функции распределения электронов плазмы по спектру тормозного излучения.

Форма отверстия определяется электрическим размером Lx, соответствующим электрическому размеру моделируемой антенны, и профилем у~х, который связан с моделируемым амплитудным распределением Ех соотношением Рис. Для этого продифференцируем выражение 4 и зададим приемлемые значения параметров элементов, образующих измерительную систему: d=5i i, Λ = 0,1i i, n = 1,5l, R=0,9, мощность источника излучения Р = LiA0, ампер-ваттная крутизна фотодетектора А = 0,ЗА/А0 . Результаты эксперимента представлены на Рис. Описанные процессы могут быть поданы на вход стандартных радиотехнических цепей.

Этот принцип может быть использован при моделирование линейных антенн с произвольным амплитудным распределением. Система акустического контроля блок-флеты, может быть реализована как на базе специального оборудования фирмы НИ, так и на базе персонального компьютера и микрофона. И самое главное - нам удалось связать воедино обучение от простых законов физики до современных концепций, находящихся на переднем крае науки, и все это в рамках образовательной программы "National Instruments". Виды модуляции: амплитудная или угловая. Также в дальнейшем планируется модифицировать программное обеспечение и адаптировать его под LabVIEW 8. А - Схема измерения ионных токов из плазмы: 1 - фемтосекундный лазерный импульс, 2 - наносекундный чистящий лазерный импульс, 3 - мишень кристаллический кремний или вольфрам, 4 - электростатический масс-спектрометр, 5 - микроканальная пластина ВЭУ-7, 6 - диафрагма, 7 - рентгеновские детекторы на базе сцинтиллятора NalTI и ФЭУ-119, 8 - полосовые рентгеновские фильтры Al, Be, б - Лицевая панель ВП, работающего с платой сбора данных «Руднев-Шиляев» ЛА-н10М8-100РС1.

При просвечивании датчика происходит последовательная дифракция оптического пучка на системе из двух решеток. На стенде смонтирован фильтр нижних частот Баттерворта 6-го порядка с частотой среза 2 кГц. Предложенные в названном ГОСТе примеры аппаратной реализации методов измерения шумовых параметров ОУ предполагают применение набора полосовых фильтров, широкополосного или перестраиваемого по частоте измерителя переменного напряжения, двух пиковых детекторов, сумматора и измерителя постоянного напряжения. Дата упаковки “____”_____________ _____ г. Отметим, что при увеличении плеча d чувствительность уменьшается, но одновременно уменьшается и усилие, необходимое для поворота датчика, и возрастает абсолютное значение протяженности линейного участка. Перспективы внедрения и развития решения Технологии НИ позволяют реализовать как эффективные средства доступного индивидуального контроля музыкальных инструментов при использовании персонального компьютера и микрофонов, так и средств высокоточного профессионального контроля с использованием специального оборудования фирмы НИ. Выражаем признательность Представительству "National Instruments" в Российской Федерации за поддержку. Схема подключения детектора рентгеновского излучения. РОСПАТЕНТ, Решение о выдаче патента от 26. Стационарные процессы в линии передачи. Постановка задачи Оборудование NI, включая модули SCXI, и графическая среда LabVIEW являются хорошей основой для быстрой разработки уникального технологического и научного оборудования, а также для проверки перспективных идей создания прототипов, на основе которых могут быть созданы серийные приборы.

Цепи с нелинейным двухполюсником. ВАЖНО!!! При работе с аппаратом Интроскан необходимо избегать попадания на глаза прямого или зеркального отраженного излучения. Пример измерения корреляционной функции с помощью программного обеспечения показан на рис. Перечень и содержание работ по техническому обслуживанию стенда, приборы и материалы, необходимые для проведения работ, приведены в таблице 3. Датчик просвечивается коллимированным оптическим лазерным пучком света. Сменные детали предназначены для сборки исследуемой схемы на наборном поле. Подбирая длительность управляющего импульса, можно добиваться максимальной амплитуды сигнала, излучаемого в исследуемый образец. СВЧ-излучение с частотой 40 ГГЦ формируется щелью 0,5×5 мм2, отраженный сигнал через рупорную антенну подается на фазовый детектор и далее на USB-контроллер NI. На основе рассмотренного варианта датчика был сконструирован высокочувствительный измеритель малых линейных перемещений.

Для снятия распределения поля применяется рупорная антенна с отрезком волновода, в котором установлен детекторный диод, с которого сигнал поступает на АЦП. Состав анализатора: приемный рупор 8, детектор 9, индикатор 10, поворотный держатель приемного рупора 11.

Измерение диаграмм направленности для смоделированного амплитудно-фазового распределения осуществляется определением показаний индикатора 10 при различных углах поворота излучателя на поворотной стойке 7. Собрать исследуемую электронную схему при выключенном питании верхней панели стенда. Также одновременно данные могут записываться в файл и передаваться в другой ВП, вычисляющий температуру электронов. Также возможно наблюдение осциллограмм, дифференциальных и интегральных законов распределения, как нормированных, так и ненормированных корреляционных функций этих процессов.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................