Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Программное обеспечение фирмы National Instruments

Описание решения Достаточно полный функциональный набор функций модулей NI Vision, IMAQ, IMADdx, Vision Assistant и Vision Development позволил создать систему машинного зрения, включающую персональный компьютер, плату ввода видеопотока с видеокамеры по интерфейсу IEEE 1394 с единым программным управлением и обработкой в среде LabVIEW. Наиболее эффективное усвоение учебного материала происходит в процессе активного взаимодействия с объектом изучения, что возможно либо на этапе лабораторного экспериментирования, либо на этапе имитационного моделирования 4. Сердцем платформы является National Instruments PCI-5640R трансивер волн среднего диапазона частот, который реализован на базе ПЛИС Xilinx; Лаборатория высокоскоростной съемки и анализа видеоизображения с цифровой видеокамерой фирмы Sony станет основой для проведения исследований в области технического зрения; Компактная модульная система сбора и обработки данных CompactDAQ с интерфейсом USB с комплектом модулей.

Показатели надежности СУ, можно количественно оценивать, используя информацию о надежности отдельных элементов. Комплекс работает под управлением операционных систем семейства Microsoft Windows® и представляет собой набор программ и аппаратных модулей, использующих технологии, компоненты и средства корпорации National Instruments®. Так, основные кнопки управления сделаны достаточно крупными, использовано цветовое выделение данных; 6 результаты испытаний двигателя должны быть оформлены в виде стандартного отчета, но время испытаний конкретного двигателя строго не регламентировано. Зависимость описывается уравнением: n- частота вращения вала двигателя об/мин, f- частота сигнала УКИ Гц, k -число коллекторных пластин двигателя.

Фильтрация осуществляется при помощи фильтра Чебышева 4-го порядка с уровнем пульсаций в полосе пропускания 0,17 дБ. В феврале 2007 года создан совместный Учебный Центр «Технологий National Instruments» на основе трехстороннего Договора между Ростовским колледжем связи РКСИ, НОУ ДПО «Ростовский институт повышения квалификации в области информационных технологий и связи» и Российским представительством фирмы National Instruments.

Кушнаренко Моделирование надежности энергонапряженных технических систем в интегрированных средах // Образовательные, научные и инженерные приложения в среде LabVIEW и технологии National Instruments: Сборник трудов междунар. Основываясь на выше приведенных представлениях для описания процесса дробления можно применить векторное дифференциальное уравнения движения точки переменной массой для случая отделения частиц 3: где М - масса жирового шарика, V - ее скорость, м/с; t - время, с; F - - сорванная с шарика масса за равнодействующая приложенных сил, Н; время dt, г; V1 - скорость сорванной с шарика массы, м/с. Описание решения Разработанный лабораторный практикум включает четыре работы. Напряжение на выходе инвертора анализировалось с целью выявления вносимых им искажений опорного напряжения. Виртуальный прибор разработан в среде Lab View 8. Аналогичным образом в представленном макете может быть реализовано автоматическое горизонтальное перемещение предметного столика по двум другим координатам. Системы технического зрения и обработки изображений» магистратура Цель курса - обеспечение базовой подготовки в области систем технического зрения и обработки изображения; исследование структур построения систем технического зрения с информационной точки зрения; изучение программных и аппаратных средств предварительной обработки изображений и способов считывания и распознавания графической и символьной информации; изучение голографических методов и средств технического зрения; оценка применения систем технического зрения при постановке физического эксперимента и анализа его результатов, возможность проведения компьютерного моделирования систем технического зрения и проектирование алгоритма управления процессами обработки и анализа изображений, полученных в результате физического эксперимента. Микроволновые исследования самоорганизованных систем при помощи NI технологий Описание решения Виртуальный эксперимент базируется на учебном курсе по основам LabVIEW, который проводится в 3 семестре СПбГПУ. Описание решения В условиях все возрастающей компьютеризации все большее распространение получают виртуальные приборы - приборы, созданные на базе компьютера, устройства ввода/вывода и соответствующего программного обеспечения 1.

Также этот подход уже на этапе проектирования позволяет установить соответствуют ли проектные решения техническим требованиям и выбрать лучшие варианты решения 7. Благодаря технологиям National Instruments, оборудование задачи кроме персонального компьютера получилось свести к одному прибору. Развитие решения - аналитическая идентификация технического состояния в режиме реального времени некоторых типов газоперекачивающих агрегатов. Далее, полученные сигналы обрабатываются средствами LabVIEW8. Аппаратные и программные продукты фирмы National Instruments дают широкие возможности при построении виртуальных измерительных приборов, которые используются как на производстве, так и в учебном процессе. Другой вариант работы программы - мониторинг в режиме реального времени. Следующий шаг - это виртуальный тренажер, который позволяет освоить управление стендом, наглядно продемонстрировать на модели процесс получения и обработки результатов, тем самым подготовить исследователя к работе с реальным, натурным экспериментом. Ситуация принятия решений становится проблемной, если по какой-либо причине сделать выбор трудно.

На базе данного устройства планируется создать систему мониторинга параметров тяговых электродвигателей, которая будет способна сигнализировать о состоянии ТЭД по искрению КЩУ, начала боксования и записывать эту информацию в процессе эксплуатации электровоза. Y=yn,pyn Альтернативы ЛПРХ=x1φ11…φ1j…φ1n . В шасси вставляются модули ввода/вывода, которые в свою очередь и взаимодействуют с нижним уровнем. Зная величины приложенных токов и регистрируемых потенциалов, находят пространственное распределение электрической проводимости внутри биологического объекта.

В рамках данного проекта созданы дистанционные лабораторные работы по курсу «Техника физического эксперимента»: в рамках задач «Специальный физический практикум». Очевидно, что это обстоятельство, а также выявленную задержку сигнала необходимо учитывать при измерении АЧХ и ФЧХ исследуемых объектов. Использование технологий NATIONAL INSTRUMENTS в операционной системе LINUX 1. Потенциально высокая надёжность СПП гарантируется только при обеспечении оптимальных температурных и электрических режимах эксплуатации. ВУЗ, кафедра или предприятие, на котором внедрено решение На данный момент внедрения нет, в перспективе использование в КГТУ им. Питание генераторов и модуля сопряжения осуществляется от сервера системы. При частоте срабатывания ключей большей 10 кГц наблюдается неустойчивость их работы.

В данной работе проведены исследования по контролю широко распространенных музыкальных инструментов типа блок-флейт и свирелей. МА, 2 дифференциальных входа 4Модуль для подключения тензорезистивного полного моста SCC-SG24National InstrumentsПолномостовой вход 350 Ом, усиление 100, диапазон сигнала +-ЮОмВ, фильтр 1,6кГц; наличие источника питания 10В 5Конвертер интерфейсов I-7520ICP DASКонвертер интерфейсов RS-485/232 Гальваническая изоляция 3000В 6Преобразователь частоты JG5-RUSLG „Регулируемая мощность 0,4-3,7кВт; возможность связи по RS-485, ModBus-RTU; частота 0-400Гц; ПИД-регулирование 7Ключ динамометрический КД20КOOO «Инструм Рэнд»Диапазон измерений: 2-20Нм, приведенная погрешность в данном диапазоне: 2%; возможность связи по RS-485, ModBus-RTU 8Датчик измерения крутящего момента DTS-100OOO «Инструм Рэнд»Диапазон измерения: 10. Факультативный цикл для студентов радиофизического факультета ННГУ и школьников Количество студентов, обучавшихся на учебных курсах "Основные принципы создания виртуальных приборов и автоматизация эксперимента на базе LabVIEW" с сентября 2006 по май 2007 - 66 чел.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................