Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Метрология и электрорадиоизмерения в телекоммуникационных системах

При чём, при каждой активации клавиши, построение гистограммы начинается с нулевой отметки, что исключает статистические ошибки распределения. Поэтому значение погрешности установки амплитуды выбрано равным 0,01 %. Контрольные точки позволяют исследовать сигналы на входе и выходе каждого структурного блока аналоговой части.

При изучении дисциплины «Цифровые измерительные приборы» рассмотренные проблемы касаются создания виртуальных цифровых измерительных устройств 1. Выбор нормирующих значений поддиапазонов основывался на анализе соответствующих значений для реальных приборов. Студенту предоставляется выбор измерительной схемы для измерения параметров резистора, конденсатора или катушки индуктивности. LabVIEW для всех / Джеффри Тревис: Пер. Метрология и электрорадиоизмерения в телекоммуникационных системах-М. Только разумное соотношение выполнения дистанционных и реальных работ позволит повысить уровень подготовки специалистов.

Внедрение и развитие решения Разработанный виртуальный прибор предполагается использовать в лабораторных практикумах по дисциплинам «Метрология и радиоизмерения»,. Разработанные три виртуальные лабораторные работы по дисциплине «Метрология, стандартизация и сертификация» внедрены в учебный процесс кафедры «Инженерная кибернетика» Алматинского Института Энергетики и Связи и предназначены для выполнения студентами-бакалаврами 2 курса специальности «Автоматизация и управление». Всё это даёт возможность оценить полный джиттер, и более точно измерить его составляющие. Внедрение виртуального макета будет реализовано в дистанционном курсе «Цифровые измерительные приборы» кафедры информационно-измерительной техники Национального технического университета Украины «КПИ», размещенного на информационных ресурсах Украинского института информационных технологий в образовании в рамках пилотного проекта дистанционного образования по бакалаврскому направлению «Метрология и измерительная техника». Предполагается дальнейшее развитие решения в виде доработки виртуального макета путем внесения систематических и случайных, аддитивных и мультипликативных погрешностей в отдельные структурные блоки вольтметра.

Hancock, Agilent Technologies, Analyzing Digital Jitter and its Components. Диапазон возможной установки частоты испытательного сигнала был выбран равным 0-100 kHz. Точность установки амплитуды генератора должна быть выше точности измерения вольтметра. Для АЦП вольтметра была введена поправка, на половину ступени квантования 3. Частота сигнала задается с помощью соответствующей ручки и поля ввода множителя частоты. Сондак «Метрология и измерительная техника в отрасли связь» № 2, 2005.

Внешний вид окна управляющей программы При активной зелёной клавише на панели измерителя параметров джиттера визуализирован импульсный сигнал во временной области. С помощью этих моделей можно представлять как идеальные, так и реальные элементы электронных схем с паразитными параметрами. При необходимости исследования сигналов в контрольных точках структурной схемы вольтметра следует перейти на вторую вкладку стенда. Результаты работы Дисциплина "Методы и средства измерений" является одной из базовых в подготовке бакалавров, специалистов и магистров по специальности "Метрология и измерительная техника" кафедры «Информационно-измерительная техника» Национального технического университета Украины «Киевский политехнический институт». При этом подача сигналов на входы вольтметра должна быть реализована путем имитации соединения выходов и входов обоих устройств. Для представления результата измерения было смоделировано светодиодное цифровое отсчетное устройство, состоящее из набора семисегментных индикаторов. Практическим результатом работы являются разработанные в среде графического программирования Lab VIEW модели реальных технических средств измерений и создание на их базе трех виртуальных лабораторных работ по дисциплине «Метрология, стандартизация и сертификация»: 1. Постановка задачи Резонансный метод является наиболее подходящим для исследования параметров двухполюсных элементов радиотехнических цепей, работающих на частотах от 100 кГц до 100 МГц 1. Создание виртуальной лабораторной работы По дисциплине «Метрология, стандартизация и сертификация» согласно рабочей программе студент 2 курса должен выполнить 3 лабораторные работы Ранее на кафедре «Инженерная кибернетика» АИЭС были созданы лабораторные работы для данной дисциплины в среде Delphi. Разработка виртуальной лабораторной работы «Имитационное моделирование погрешностей канала измерения температуры» в среде LabVIEW Цель: Разработка комплекса виртуальных лабораторных работ по дисциплине «Метрология, стандартизация, сертификация» Актуальность проекта заключается в применении новейших информационных технологий современной компьютерной техники в различных видах учебных занятий, поскольку виртуальные лабораторные работы, разработка которых возможна на базе предложенных программ, позволяют сменить проведение лабораторных занятий на физических лабораторных стендах их проведением в компьютерных классах. Доступ к ним у обучающихся может отсутствовать. Были учтены характерные особенности блоков. Метрология, стандартизация и сертификация» для радиотехнических и телекоммуникационных направлений подготовки специалистов. Поэтому необходимо представить внутреннюю структуру вольтметра с возможностью просмотра значений и формы сигналов в некоторых заранее заданных контрольных точках. Лабораторный практикум по дисциплине «Метрология и радиоизмерения» включает в себя лабораторную работу по изучению данного метра с использованием автономного измерителя добротности, который включает в себя генератор гармонических колебаний, последовательный резонансный контур и вольтметр действующего значения.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................