Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Моделирование проводится по методу усреднения

Создание лабораторного практикума, который опирается на виртуальные измерительные приборы, среда визуального программирования, результаты схемотехнического моделирование, фиксация практикума в электронном виде, допускает создание электронного образовательного ресурса ЭОР. После этого динамические характеристики либо выдаются на выход потребителю, либо запоминаются в запоминающем устройстве 13. Имитационное моделирование систем - искусство и наука. Переносим подобранную функцию в программный пакет Lab VIEW. Схема электрической части модели.

Для АЦП вольтметра была введена поправка, на половину ступени квантования 3. Создание виртуальных приборов распространяет эту тенденцию и на лабораторный практикум. Программирование уже созданного ВП в программном пакете Lab VIEW. Внедрение и развитие решения SPICE-модель оцифрованного импульсного сигнала может быть получена несколькими способами: а с использованием генератора цифровых сигналов, при этом в задании на моделирование в средах PSpice, OrCAD, MultiSim и др. Для возможности проведения исследований прибора необходима подача на его вход испытательных сигналов. Итак, на нечеткие наклонные следы, оставленные поднимающимися пузырьками, накладывался эталон - наклонная полоса.

Сами виртуальные приборы ВП обладают более широкими возможностями. Для задания требуемой последовательности срабатывания ключевых элементов и времени их замкнутого состояния используются генераторы прямоугольных импульсов Pulse Generator в режиме работы Sample based. В Блоке заложена возможность одновременного отображения до четырех измеряемых сигналов. В нижней части рисунка изображен узел Matlab Script Node, осуществляющий воспроизведение аналитического решения первого уравнения системы. В качестве примера представлена одна лабораторная работа «Имитационное моделирование суммарной погрешности измерительных каналов». Второй вариант S-модели и аналоговый процессор рис.

В Москве, число участников – 5 чел. Расчёты произведены при помощи различных математических функций LabVIEW. Обработка данных проводилась на компьютере с помощью программного обеспечения: LabVIEW и MA TLAB. Наиболее информативным комплексным показателем работоспособности Проявляется эффективность функционирования, позволяющая оценить степень достижения поставленной цели. Если учесть, что электротехническая подготовка строится на основе физики и математики, то нетрудно увидеть, что, по сути, здесь в основном мы встречаемся с электрическими и электронными цепями и их моделированием в той или иной форме. Понятия гомоморфизма и изоморфизма в теории моделирования. Произведение N∆ определяет размер временного окна измерителя стробоскопического. Экспериментальная установка по исследованию механических соединений представляет собой различные виды модельных соединений шпоночное, клеммовое, соединение с натягом, заклепочное, сварное и резьбовое и нагрузочное устройство. Сигнал d~k вычитается из эхо-сигнала dk, в результате чего образуется неподавленное остаточное эхо ек.

Этими кнопками можно перемещать «активные» отмеченные «;» курсоры; слева — редактор курсоров. Описание решения Для решения указанных выше задач подготовлен лабораторный практикум, направленный на моделирование типовых химико-технологических процессов. Виртуальный лабораторный практикум для изучения технологии выращивания полупроводниковых и оптических монокристаллов 1.

Одно из них является переменным. Моделирование позволяет проводить обучение и тренинг обслуживающего персонала, значительно снижая вероятность возникновения аварийных ситуаций в результате неотработанных или неэффективных управляющих воздействий. Моделирование в системе MatLab. В Нижнем Новгороде, число участников - 14 чел. Далее следует установить с помощью органов управления генератора требуемые параметры испытательного сигнала. LabVIEW для всех Текст: пер.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................