Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Тревис LabVIEW для всех

Применение среды LabVIEW с использованием технологии виртуальных приборов позволило значительно упростить и сократить время разработки модели прохождения сигналов через стробоскопический осциллограф, а также системы автоматизации осциллографа Agilent 81204B DSO. Измеритель состоит из компьютера платы ввода/вывода USB 6008 и преобразователя ток напряжение.

На одной стороне пластины находится фазовая дифракционная решетка с профилем в виде меандра, а на другой стороне -зеркальная отражающая пленка. Схема измерителя малых линейных перемещений на ПАВ с ОДР Теоретический анализ, проведенный в работе 1, показал, что для измерения перемещений целесообразно использовать нулевой порядок дифракции. Схема решения имеет вид: акселерометр → плата сбора данных → ВП LabVIEW → данные о скорости; Идея решения - использовать акселерометр для получения данных о скорости. Строить гистограмму распределения экспериментальных данных; проверять соответствие закона распределения экспериментальных данных с заданным с помощью критериев Колмогорова и х2 Рис. Всего Радиофизический14 11310 Физический 1 1 ВМК 1 1 Мех.

В качестве датчика звука использовался внешний стерео микрофонный блок Array2-SNA фирмы Andrea Electronics Corp. В качестве прецизионного ОУ усилительного каскада измерительной схемы применен AD797, обладающий минимальными шумовыми параметрами Э. На следующей паре рисунков 3-4 более сложный модельный сигнал также восстановлен без заметных ошибок. Квантовая механика и интегралы по траекториям. Инструменты для исследования компенсации эхо-сигналов 1. Погрешность измерения каждого из параметров не превышает 2% верхнего предела.

Програмное обеспечение написано на LabVIEW 8. Эта система представляет собой комплекс устройств и программных средств, непрерывно контролирующих состояние коллекторно-щеточного узла и частоту вращения ТЭД.

Основы LabVIEW, Санкт-Петербург: БХВ-Петербург, 2004, 468с . Также, так как плата имеет 2 выходных канала АОО, АО1, необходимо программно выбрать выходной канал. Большой опыт преподавания дисциплины «Теория принятия решений» позволяет сделать вывод о существенной помощи, которую оказывает ЛПР разрабатываемая ВСППР. На рисунке 2 представлена интерфейсная панель программы управления температурными режимами специальной барокамеры, созданной с применением технологий NI использовался пакет LabVIEW 8. Основу прибора составляет USB DAQ 6008.

Расшифровка таких интерферограмм позволяет делать заключения о характере исследуемого процесса и определять его временные параметры. В состав аппаратно-программного комплекса входят: среда программирования NI LabVIEW, набор драйверов DAQ 7. Для реализации виртуального полярографа необходимо: 1.

Разработанный виртуальный прибор, плата ввода-вывода М-серии NI PCI-6251, соединительные шлейфы, персональный компьютер процессор: Intel Pentium 42. Помимо модернизации лабораторного оборудования использование этих технологий позволяет создавать автоматизированные измерительные системы практически любой сложности и производительности, а также осуществлять интеграцию этих систем с телекоммуникационными сетями, обеспечивая возможность дистанционного управления реальными физическим объектами.

Телефонные станции, как правило, располагаются на больших расстояниях. Кроме того, предусмотрена возможность сохранения результатов анализа в виде графиков, заключенных в html файл Рис.

Используемое оборудование и программное обеспечение National Instruments Поставленные задачи решались с помощью языка LabVIEW, программной разработкой фирмы NI. Он позволяет создавать простые программы по обработке видеоизображений, не прибегая к программированию на уровне регистров. Пусть Ф3 - решение задачи Ф2, полученное при реализации конкретного метода на конкретной ПЭВМ. Окна программ Спектральный и Корреляционный анализатор представлены на рисунке.

На рисунке 1 якорные обмотки двигателей обозначены символами I-VIII, а, соответствующие им обмотки возбуждения - ОВ1-ОВ8. Лабораторная работа предназначена для ознакомление студентов с таким явлением как отрыв потока при внутреннем течении в канале, которые встречаются довольно часто. В них производится согласование сигналов измеряемого и измерительного приборов, управление мощными источниками света согласно задаваемым с лицевой панели временным задержкам.

Если же нажать кнопку сброса RESET, то выполняется только инициализация микроконтроллера, а память SRAM не изменяет состояния. Расчет осуществляется для сигнала с вертикальной, или с горизонтальной поляризацией.

Локализация коррозии позволила наблюдать по АЭ и фрактографии кинетику развития единичных очагов разрушения, что повысило точность измерения инкубационного периода КРН циркония. Модель изоморфна по отношению к некоторому абстрактному образу, представлению об объекте, которое в свою очередь является его гомоморфным отображением. Одновременное выполнение базовой операции вычисления суммы произведений MAC выполняется за один машинный такт равный 10-8 сек. Наилучшим образом это можно реализовать в среде графического программирования LabVIEW. Зависимость NTC сопротивления термистора от температуры. Так как при параллельном сборе данных входящая в состав АПК плата DAQ 6251 использует один АЦП на все каналы и мультиплексор псевдопараллельный сбор данных, то возникает постоянная межканальная задержка. Аппаратные средства задачи должны быть максимально универсальными, подходящими для выполнения различных работ, но не в ущерб функциональности. Для выделения отдельного контура из общей картины потребовалась разработка специального алгоритма.

LabVIEW7 в исследованиях и разработках. Специализированная учебно-исследовательская лаборатория является структурой, позволяющей всем желающим реализовать свои технические идеи на основе единой платформы LabVIEW, своего рода инкубатор идей.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................