Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Аккуратно вставляйте кабели mini-USB и блока питания в разъем аппарата

Таким образом, необходимо регистрировать ионный или электронный ток в каждом лазерном выстреле. Импульсное напряжение Uимп ; 10. Необходимые переключения, а также коммутация измерительных каналов производятся путем подачи управляющих команд. Vi", а дальше вычисляется разностный сигнал. Описание решения, используемое оборудование и ПО Установка работает под управлением КПК Aser300 через модуль сбора данных USB-6008 National Instruments. Ток индикаторного электрода, преобразованный в соответствующее напряжение, поступает на устройство обработки и после него на устройство отображения.

Учебный Центр «Технологии National Instruments» открыт для всех желающих изучить самые современные компьютерные измерительные технологии, принять участие в интереснейших проектах в области инфокоммуникаций, информационной безопасности и информатики, стать востребованным специалистом на рынке труда. Интерфейс «Мультиметр» Дополнительно в данный Блок «Характеристики сигналов и цепей» встроен измеритель параметров гармонического сигнала мультиметр, который имеет вид, представленный на рис. Стандартный драйвер таких цифровой камеры предполагает использование программ видеоконтроля ScopePhoto, minisee и т. Использование плат сбора данных с интерфейсом PCMCIA или USB с питанием через интерфейс позволяет сделать вариант установки для тестирования солнечных модулей и энергетических установок в полевых условиях. Выбор максимального и минимального значений напряжения на датчиках 3. Для выявления параметров дефектности различных сварных швов необходимы были различные алгоритмы обработки. При представлении во временной области дополнительно вводится последовательность длинной N отсчетов, первый элемент которой равен единице, а все остальные нулю. Постановка задачи Была поставлена задача создания измерителя вольтамперных характеристик на основе использования экономичной платы USB 6008 для использования в учебных целях. Используемое оборудование и программное обеспечение National Instruments USB 6008, LabVIEW. Рисунок 4 Соответствие полученных результатов теоретическим зависимостям говорит о корректности работы измерителя ВАХ фотоэлементов. Где: IЯ - ток якорной обмотки ТЭД, А; Rя - Активное сопротивление якорной обмотки ТЭД, Ом; RT - сопротивление балластного резистора, Ом. Работа программы в режиме калибровки приведена на рис.

В настоящее время в качестве лабораторной платформы нами используются станция Nl ELVIS или макетный коннектор SC-2075, которые подключаются к системному блоку ПК либо посредством DAQ- платы, например, Nl PCI-6251, либо устройства Nl USB-6251. B 20 дБ/В ; Шаг изменения усиления 2,5 дБ ; Время реакции изменение усиления на 40 дБ 0,25 мс ; Напряжение питания 24В ; Ток потребления, не более 250 мА ; Интерфейс с ПК USB1. Устройство управляется от компьютера через интерфейс USB. Количество правильных ответов по вариантам в целом может отличаться почти в 1,3, а по отдельным заданиям почти в 1,5 раза. Различие амплитуд генерируемого и измеряемого сигналов в режиме работы с компьютером при генерации гармонического сигнала, % с частотой 10 кГц не более 5 с частотой 100 кГц не более 10 2. МГц ; Межканальное затухание, типовое -50 дБ ; Максимальное усиление Vynp =1,7В 50,5 дБ ; Минимальное усиление Vynp =0,2B 5дБ ; Погрешность установки усиления Vynp =0,2. Принципиальная схема электрических соединений в приборе Рис. Если это произошло, извлеките элементы питания, а сам аппарат следует выдержать в теплом сухом помещении не менее 24 час. Внешний вид платы устройства на рис.

Внедрение и развитие решения Применение в качестве драйвера USB микросхемы конвертера USB-COM, позволило широко применять весь инструментарий для работы с СОМ-портами 3, 5. В ходе тестирования была проведена успешная графическая реконструкция. В него входят элемент подлежащий температурной стабилизации контролируемый объект активный элемент п/п лазера рис. КОМПЛЕКТ ПОСТАВКИ N п/п Наименование Кол-во, шт 1 Аппарат Интроскан 1 2 Картонный упаковочный короб 1 3 Методическое пособие по применению аппарата комплексной квантовой терапии «Интроскан» на CD или в печатной форме* 1 4 Паспорт 1 5 Комплект аккумуляторов АА** опционально 1 6 Интерфейсный кабель mini-USB 1 7 Блок питания Motorola 230В, 50/60 Гц 1 8 Программное обеспечение на CD*** опционально 1 *, ** - поставляется за отдельную плату; *** - поставляется бесплатно при наличии обновлений ПО; стандартное программное обеспечение доступно для использования на сайте: 4. Место наших исследований в иеархии эксперимента показано в таблице. Измеритель ВАХ фотоэлементов может быть использован в лабораторном макете. Если количество отсчетов невелико до 4096, то выходной сигнал рассчитывается непосредственно во временной области по формуле 1, представленной для дискретных сигналов как ряд: При большем количестве отсчетов целесообразно сначала выполнить преобразование Фурье входного сигнала, затем произведение полученных коэффициентов на отсчеты частотного коэффициента передачи, и перейти обратно во временную область путем обратного преобразования Фурье полученной спектральной плотности выходного сигнала: Такой способ вычисления более экономичен, чем прямое использование формулы 8. Важными достоинствами таких приборов являются: легкость их перестройки адаптации под конкретные измеряемые величины и их значения; возможность использования различных видов обработки, индикации и документирования результатов измерения; простота автоматизации процедуры измерения. Перемноженные мгновенные значения тока и напряжения лампы определяют мгновенную мощность.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................