Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Максимальное значение погрешности

Вариант такого стенда рассматривается в данной работе. Предлагаемый алгоритм позволяет получить значение частоты дискретизированного сигнала с точностью до 3 десятичных разрядов даже при отношении сигнал/шум 1:1.

На предприятии «Электронная техника - МГУ» предполагается проведение разработки серии образцов комплекса, которые могут применяться в лабораторных и научно-исследовательских работах, а также при контроле СПП в промышленности. Обучение становится прозрачным, личностно ориентированным процессом. Обмен командами и данными выполняется по скоростному последовательному USB каналу связи. Система температурной стабилизации 1.

Наибольшие перспективы данной области медицинских исследований имеет медицинская видеоэндоскопия, позволяющая провести не только визуальный осмотр исследуемых органов, но и зафиксировать весь процесс исследования на разнообразные носители информации. Разрабатываемую систему сбора данных и управления предполагается использовать совместно с комплексом СКЦ разработчик СКВ «ОРЕОЛ» в составе нефтегазового оборудования, выпускаемого рядом промышленных предприятий страны. Имитационное моделирование в задачах разработки АСУТП/ Р.

Первая мгновенная схема VS1 и VS2 закрыты: где: L1 - собственная индуктивность первичной обмотки, Гн; е - мгновенное значение ЭДС источника питания, В; R1 - активное сопротивление первичной обмотки, Ом; i1 - мгновенное значение тока первичной обмотки, А; i21 и i22 - мгновенные значения токов обмоток W21 и W22, A; i0B - мгновенное значение тока в обмотках возбуждения, А; ivs1 и ivs2 - мгновенные значения токов в тиристорах, А; uvs1 и uvs2 - мгновенные значения напряжений на тиристорах, В; М121 и М122 - взаимоиндуктивности между обмоткой W1 и обмотками W21 и W22, Гн. Получить такую зависимость экспериментальным путем очень сложно. В процессе разработки было предложено использовать следующие типы испытательных сигналов: постоянный обеих полярностей, синусоидальный, меандр скважностью 2, треугольный. Виртуальная система поддержки принимаемых решений в среде LabVIEW 1. Несинхронное прерывание, выполняемое ключевыми элементами, является свойством структуры процессора, реализующего численных метод интегрирования. Малое значение шага достижимо на современной микропроцессорной 6aзe DSP, FPGA и FPOA. Длительность импульса ШИМ -сигнала управляется с помощью PID алгоритма 6Аналоговый каналДанный канал предназначен для контроля температуры печатающей головки; Контролер принтера получает аналоговый сигнал с температурного датчика на печатающей головке и преобразует его с помощью встроенного АЦП 7Цифровые каналыДанный набор каналов предназначен для контроля над наличием и натяжением термоленты; Контролер принтера получает информацию от датчиков о наличии и натяжении термоленты ; При возникновении проблем с термолентой, контролер принтера инициирует включение светового индикатора, сигнализирующего о неисправности 8Цифровые каналыДанный набор каналов используется для вывода на дисплей пульта управления информации о текущей температуре печатающей термоголовки и установленное целевое значение температуры; Контролер принтера после оцифровки аналогового сигнала с температурного датчика передает информацию о текущей температуре термоголовки на дисплей пульта управления При поступлении запроса с пульта управления контролер принтера в течение 10 секунд передает на дисплей пульта управления установленное целевое значение температуры для термоголовки, после чего снова переходит в режим передачи текущей температуры 9Цифровые каналыДанные каналы используются для настройки целевого значения температуры нагрева печатающей термоголовки с использованием дистанционного пульта управления; Контролер принтера при получении соответствующего сигнала с пульта управления либо повышает, либо понижает текущее значение температуры на 1 градус. Данная схема реализована с использованием двух различных акселерометров: 1 Акселерометр MMA6231Q фирмы Freescale Semiconductors, Inc. Эта комплексная экспедиция была посвящена исследованию грязевого вулкана «Хаакон Мосби».

Коэффициент передачи сумматора со входов U1 и U2 на выход U3 не менее 0,9 2. Ток ротора косвенно измеряется при помощи модуля аналогового ввода. После измерения автоматически вычисляется значение ширины корреляционной функции по полувысоте, что сразу же позволяет определить длительность импульса в каждом лазерном выстреле. Огибающая выводится на график блок «Waveform chart». Такой способ подбора не является достаточным для обеспечения их надежности, так как электрические параметры СПП существенно зависят от температуры полупроводниковой структуры. Окно калибровки измерительных каналов В процессе калибровки для каждой контрольной точки на датчики задается требуемое значение физической величины и производится ее измерение. Такими, действие которых ограничено подинтервалами ∆Tj При равномерном шаге дискретизации ∆ti интегральные значения на участке ∆Tj получаем путем суммирования произведений выборочных значений на весовые коэффициенты, получившие название коэффициентов Ньютона-Котеса. Представлены параметры лазерного профилометра и характеристики программного обеспечения ПО для управления профилометром, разработанным для измерения профиля мембран и корпусов датчиков давления, выпускаемых ОАО «Теплоконтроль» г. В этом случае при среднеквадратическом отклонении от линейности в нулевом и первых порядках менее 2,1·10-3 в единицах I полный диапазон линейности датчика составляет 0,538Λ, в том числе суммарный диапазон линейности в первых порядках составляет 0,350Λ.

Стоимость таких систем будет определять и стоимость выполнения полного цикла модельного проектирования встраиваемых систем управления. Данный АПК также находит применение в научных исследованиях, проводимых аспирантами кафедры, при решении задач точной настройки исследуемых цепей. При коротком замыкании происходит выдача оператору соответствующего сообщения. В последнее время появились компьютеризованные станции контроля. В окнах прибора в условных единицах отображаются амплитудные значения напряжения сети, напряжения на лампе, тока лампы. Интенсивности всех точек, изображенные на эхограмме согласно шкале цветов, которые попадают в эталонную полосу, включая и ее граничные точки, суммировались, образуя некоторую величину Cumsum, которая и принималась за значение корреляционной функции.

Математики, алгоритмисты и программисты хорошо поработали, но пока не дали быстрых, эффективных и универсальных алгоритмов для решения любых задач. Минимальное значение амплитуды гармонического сигнала 5 мВ, максимальная частота 500 Гц, при этом fd должна быть не менее 5 кГц, а ∆KB, не менее 0,5 мВ.

Основной целью работы являлось определение условий генерации «горячих» электронов. Автоматизация функционального проектирования электромеханических систем и устройств преобразовательной техники / В. При этом на экране загорается мигающие транспоранты «Амперметр сгорел!» и «Переключите предел измерения прибора».

Например, для нормирующих усилителей была предусмотрена возможность перехода в режим насыщения. Диапазон устанавливаемых амплитуд 0,01 mV - 1111 V соответствовал максимальному диапазону измерения вольтметра с возможностью получения его переполнения. Проверка работы прибора проведена на RC-четырехполюсниках 1-го и 2-го порядка рис. Исследуемая система задана уравнениями: и имеет следующие начальные условия z10=-1, z20= z30=2. Решающее значение для долгой и стабильной работы двигателя имеет своевременная диагностика износа.

Используемое оборудование и программное обеспечение National Instruments Программа выполнена в среде программирования LabVIEW 7.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................