Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Проектирование научных и инженерных приложений в среде MATLAB

Таблица 1 Показатели качества, характеризующие предпочтения ЛПР φ1. Описание решения Для того, чтобы решить проблему необходимо иметь упрощенную концептуальную модель проблемной ситуации.

Системы поддержки принимаемых решений СППР используются в основном на верхнем уровне управления, занимающегося стратегическим планированием. Управление окнами осуществляется из главного меню Labworks Разделы "Лабораторная работа" и "Окна" или кнопками панели инструментов см.

Современные программные средства математического анализа, такие как MatchCad от компании MathSoft, MatLab The MathWorks inc. Психологи выделяют разные типы памяти для хранения информации в течение короткого и длительного периодов времени: кратковременную КП и долговременную память ДП. Компьютерное моделирование 2002:Труды Междунар. Программный продукт, разработанный в LabVIEW, состоит из трех основных частей: лицевой панели, блок-диаграммы и иконки с соединительной панелью. Инструменты для исследования выравнивания электрических каналов 1. Данный блок программ может найти широкое применение не только для обработки результатов, но и для последовательного познания принципа ИНС.

Оценка возможных состояний ситуации принятия решения может осуществляться либо по одному критерию однокритериальные задачи оптимизации ОКЗО или задачи со скалярным критерием, либо по многим показателям эффективности к&чества - многокритериальные задачи оптимизации МКЗО. Такой подход характерный для открытых систем ОС. Adaptive equalization // IEEE Signal Processing Magazine.

Низкая скорость моделирования подтверждает необходимость аппаратной реализации решателей ОДУ. Ускорение моделирования достигается за счет того, что в оперативное запоминающее устройство компьютера загружаются не все приложения языка MATLAB и осуществляется оптимизация переменных в соответствии с их типом. Итак, виртуальную лабораторию можно рассматривать как аппаратно-программный инструментарий, который используется в качестве объектно-ориентированной информационной среды для эффективного интерактивного взаимодействия студента со средой моделирования.

Министерство образования РФ рекомендовало такой подход к внедрению в учебный процесс и научные исследования вузов 1. Это означает, что свертка импульсных откликов канала связи w и эквалайзера h в моменты времени кТ близка к дельта-функции рис. Далее формируется отчет о проделанной работе. Совместное использование пакетов LabVIEW и MATLAB в задачах эхокомпенсации и выравнивания каналов связи // Современная электроника. Лысенко Решение задач математической физики в системе MatLab: Таганрог: Изд-во ТРТУ, 2005. Внедрение и развитие решения Программный модуль позволяет: обрабатывать данные для определения оптимальной топологии ИНС и исключения переобучения; представлять графически процесс обучения ИНС, что важно для пояснения принципа её работы. Выбор одного из решений в соответствии с системой предпочтений ЛПР. Оборудование, встраиваемое как в персональные, так и в промышленные компьютеры, наряду с решением вопросов внедрения информационных технологий в учебный процесс преподавания естественно-научных дисциплин, позволяет унифицировать и значительно упростить постановку автоматизированных методик измерений в научных исследованиях, в том числе и по приоритетным направлениям в области прикладной физики, включая нанотехнологии. Ограничение в выборе функциональных возможностей виртуальной лаборатории есть лишь характеристики компьютера, существующая библиотека математических функций и фантазия разработчика. В тоже время имеется аппаратно-программный комплекс LabVIEW, устраняющий эти недостатки.

Проектирование научных и инженерных приложений в среде MATLAB», М. Пакет LabVIEW предоставляет уникальную возможность объединить методы принятия решений в условиях многокритериальности и неопределенности. При этом ЛПР должен учитывать действия помех, ошибок и другого вида неопределенностей у, о которых лишь известно, что они принимают значение из заданного множества Y Є R". Необходимо отметить, что обращение к ядру Matlab из тела цикла Simulation Loop значительно увеличивает время реализации модели. Вычислительные процедуры: алгоритмы адаптивной фильтрации, расчет импульсных откликов, формирование сигналов, оценка параметров сигналов и показателей качества работы адаптивных фильтров реализованы на языке MATLAB 2. Применяется функция Continuous Inverse CDF. После работы на виртуальной модели лабораторной установки пользователю предлагается пройти тест. Межсимвольная интерференция, наряду с шумом zk рис.

Транслятор не обеспечивает корректную адекватную замену иерархических моделей Simulink, что значительно сужает класс моделей. Для математического моделирования использовался язык технических расчетов MATLAB 7. Программа определения точных значений количества периодов и частоты дискретизированного сигнала. Практикум по Electronics Workbench / Под ред.

Подсистема управления работами рис. Топология и параметры отдельных четырехполюсников задаются в моделирующей программе.

Это утверждение доказывается тем, что в разностных уравнениях значения производных становятся практически равными. Для оценки погрешности полученного решения переменной zit производится формирование известного аналитического решения zit = -2·et + е4t с помощью блоков Ramp и Matlab Fen. ВУЗ, кафедра или предприятие на котором внедрено решение Виртуальный тренажер «Анализ работы установки для охлаждения водой колбасных изделий после термообработки» разработан в Московском государственном университете прикладной биотехнологии. Для выполнения проектов требуется программное обеспечение указанных или более высоких версий. При использовании виртуальных тренажеров и тестовых программ для проверки знаний студентов приоритет LabVIEW объясняется тем, что по сравнению с известными программными оболочками типа MatLab, MathCad и т.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................