Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Имитационное моделирование систем - искусство и наука

Описание решения Суть разработанного виртуального лабораторного практикума заключается в замене реального лабораторного исследования на математическое моделирование изучаемых физических процессов 4. Поскольку под имитационным моделированием понимают машинное моделирование на ЭВМ, воссоздающее режим функционирования исследуемой системы с использованием математической модели объекта исследования и модели случайных воздействий. Представленные в работе инструменты использованы в Государственном унитарном предприятии г. Модель используется как условный образ, сконструированный для упрощения их исследования. Неотъемлемой частью ИИС является персональный компьютер, в состав которого входит плата аналого-цифрового АЦП и цифро-аналогового преобразования ЦАП, необходимые для: соответственно, преобразования унифицированного аналогового сигнала в цифровой вид, -понятный для ЭВМ и обратного процесса - преобразования цифровых данных с ЭВШв аналоговый сигнал для управления исполнительными устройствами. Данный инструмент реализует модели рис.

Для обеспечения образовательных и научных программ центр и кафедральные профилирующие лаборатории на средства национального проекта «Образование» закупили оборудование National Instruments на сумму, превышающую 5 000 000 руб. Стенды для исследования двигателей внутреннего сгорания при неустановившихся нагрузках.

Исследования Промышленная автоматизация Автоматизация технологических процессов получения дисперсных продуктов на основе виртуальных приборов Использование систем технического зрения для контроля образцов Исследование электромагнитных переходных процессов при коротких замыканиях в узлах электрических нагрузок Применение LabVIEW при разработке обучающих информационных систем и тренажеров для персонала химических предприятий Разработка виртуальных тренажеров путем моделирования технологических процессов пищевых производств с использованием языка программирования LabVIEW Система блокировок, сигнализации и защиты ускорителя ЛУЭ-200 Система сбора данных и управления процессом цементирования нефтегазовых скважин Управление температурой газовой среды специальной барокамеры Разработка программного обеспечения с использованием среды графического программирования LabVIEW для моделирования типовых химико-технологических процессов Использование технологий NATIONAL INSTRUMENTS при разработке автоматизированного комплекса для исследования средств измерения температуры Оборудование для промышленной термотрансферной маркировки изделий Автоматизация реометрических исследований на базе LabVIEW Применение измерителя иммитанса для исследова¬ния электрофизических свойств аморфного гидрогенизированного карбида кремния A-SIC:H Исследование электромагнитных переходных процессов при коротких замыканиях в узлах электрических нагрузок Стенд для исследования электрических переходных характеристик асинхронных двигателей при пуске Автоматизация контроля сварных швов на базе технологий фирмы NATIONAL INSTRUMENTS Измерительный контроль с применением неиндустриальных камер в производственных условиях Моделирование надежности и эффективности систем управления в интегрированных средах . Использование разработанного обеспечения для автоматизированной идентификации технического состояния промышленных объектов и оценки эффективности функционирования. В зависимости от программного алгоритма, выполняются операции контроля или измерения с погрешностью ±1-2 мкм, результаты сохраняются на жестком диске и отображаются на мониторе, формируются управляющие сигналы для механизмов перемещения объектов измерения. Индикатор комментариев к программе. Доступ к ним у обучающихся может отсутствовать.

Каждый из индикаторов графический и цифровой имеет собственный перечень контрольных точек. Ira Leifer, Ranjan Kumar Patro, The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study // Continental Shelf Research. В графическом виде отображаются все сигналы, отмеченные на рис. Подсистема теоретической подготовки.

После этого он готов к получению задания и выполнению работы на тренажере. Сигналы, поступившие в блок идентификации параметров дифференциального уравнения 11, используются для определения параметров динамических моделей рабочих процессов двигателя внутреннего сгорания коэффициентов дифференциального уравнения, при этом используются дифференциальных уравнений следующего вида: для регуляторной ветви регуляторной характеристики где a1, a2, a3 - искомые коэффициенты дифференциального уравнения; ∆Ai - изменение наблюдаемого показателя двигателя внутреннего сгорания крутящего момента на валу двигателя, частоты вращения коленчатого вала двигателя, расхода топлива и воздуха при изменении нагрузки; AM - изменение момента сопротивления электротормоза; К - коэффициент пропорциональности. Постановка задачи При использовании дистанционных форм обучения в технических дисциплинах возникают сложности, связанные с необходимостью изучения принципа действия тех или иных приборов и устройств на реальных физических приборах и макетах. Алгоритм определения параметров модели Моделирование Численное решение дифференциального уравнения Как отмечалось выше нам задано дифференциальное уравнение третьего порядка: где xt - функция, определяющая воздействие на вход системы; yt - функция выходной отклик системы; a2, a1, a0, К- постоянные коэффициенты.

На экран можно вывести либо графики изучаемых процессов и характеристик, либо схему, на основании которой проводится математическое моделирование выходного процесса, либо формулы, характеризующие выбранную математическую модель. Применяемый для решения метод не является точным. Теоретический расчет выполняется по следующим формулам: Исходными данными для расчетов являются погрешности первичного преобразователя и класс точности вторичного прибора. Она реализует решение однородной системы уравнений, что требует внесения определенных изменений в схему аналогового процессора. Несомненно, что появление в программах Multisim 9 и NI Multisim 10 модулей LabVIEW и их дальнейшая интеграция, а также связи с реальными устройствами существенно повышают возможности обучения. На данное время завершена разработка виртуального стенда на базе микроконтроллера Atmel ATmega 8535. Подсистема моделирования биотепломассообменных процессов содержит: - моделирование параметрических полей изменения температуры, влажности и биологических компонентов продукта в процессе нагрева, предназначенный для расчета оптимальных технологических режимов и выбора энергоподвода ИК-. Поэтому было принято решение реализовать учебный стенд на двух вкладках. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера 1. Для достижения цели решены следующие основные задачи: 1 Проведена структуризация моделей надежности СУ, предусматривающая три класса структур: параллельно-последовательные, мостиковые, и типовые; 2 Разработано алгоритмическое и математическое обеспечение для каждого класса структур с возможностью получения количественных параметров безотказности; 3 Составлено методическое обеспечение, разработаны модели и проведено моделирование надежности СУ в каждом из 3-х классов структур в интегрированной среде визуального моделирования VisSim; 4 Разработано методическое обеспечение и построены виртуальные приборы для моделирования надежности систем управления каждого из 3-х классов структур в среде графического программирования LabVIEW. Программное обеспечение данного стенда было написано на LabVIEW лицевая панель главной программы изображена на рис.

Поэтому целью данной работы являлась разработка учебного стенда для исследования принципа действия универсального цифрового вольтметра. Важно так «сконструировать» приближенную математическую модель, чтобы она достаточно точно отражала характерные свойства рассматриваемого явления.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................