Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

Сначала в металле разрушаются неметаллические включения размером ~ d/10, а после пластической деформации возникшей полости происходит срез перемычки между двумя или тремя смежными ямками. Виртуальный практикум может выполняться студентами как под руководством преподавателя, так и в рамках самостоятельной работы.

Описание решения Стенд состоит из блока управления и измерения, персонального компьютера и исследуемого двигателя. Такая основа создает предпосылки для унификации технических средств лабораторных стендов многих учебных дисциплин, сокращения сроков получения конечных результатов, упрощения обслуживания и развития. Подобная конфигурация измерительной системы в совокупности с требованиями повышенной надежности в условиях производства диктуют необходимость использования промышленного компьютера в качестве управляющего модуля. Постановка задачи Тенденция использования виртуальных компьютерных технологий в образовании благодаря созданию виртуальных измерительных приборов распространилась и на лабораторный практикум.

Постановка задачи Разработка и внедрение в учебный процесс лабораторных стендов с использованием новых информационно-измерительных систем является важнейшим фактором повышения эффективности и качества проведения лабораторных работ. В помощь студентам составлена краткая инструкция пользователя. На специализированных рабочих станциях установлено лицензионное программное обеспечение LabVIEW 7. Были смоделированы все возможные взаимные комбинации соединения клемм вольтметра и генератора, а также особенности подключения приборов, например, короткое замыкание выходных клемм генератора, смена полярности сигнала при инверсном подключении проводников и т. Выбор данных типов сигналов был обусловлен необходимостью исследования работы обоих измерительных каналов вольтметра. Выбор цели - исходная точка в процессе принятия решения. Последовательность работы с учебным стендом следующая. Изучение основных и дополнительных погрешностей средств измерений. Такой подход снижает стоимость разработки проекта АСУТП, а также позволяет уже на этапе проектирования смоделировать и предусмотреть нештатные и аварийные ситуации, экспериментальная реализация которых невозможна, либо нецелесообразна 6. Далее повторяется процедура аналогичная описанной в п.

Все «мертвые» схемы учебника как бы оживают. По сложности и стоимости объекты исследований и проектирования в учебном процессе могут быть сопоставимы со стандартным оборудованием лабораторных стендов. Любенко, Лабораторный практикум "Интеллектуальные датчики с электронными таблицами". Выключить питание стенда и разобрать схему. При коротком замыкании происходит выдача оператору соответствующего сообщения. Необходимо осуществить оцифровку выходного напряжения ЦАП с высоким разрешением, получить массив отсчетов и математическую функцию, его аппроксимирующую, а также описание этого напряжения с целью создания его модели для программ схемотехнического моделирования PSpice, OrCAD, MultiSim и др. Устройство имеет следующие технические характеристики: ; несущая частота to входного сигнала - от 0,5 МГц до 50 МГц; ; ширина полосы входного сигнала Af по уровню -ЗдБ - от 10 кГц до 300 кГц; ; затухание вне полосы - не менее 30 дБ при отстройке на ∆f от f0; ; коэффициент усиления - от 0 дБ до +90 дБ регулируется независимо в каждом канале с шагом 3 дБ; ; динамический диапазон -110 дБ; ; максимальная амплитуда выходного напряжения - 2,4 В; ; чувствительность - 3 мкВ при отношении С/Ш=10 дБ и полосе 50 кГц; ; максимально допустимая амплитуда входного сигнала - не менее 100 В при длительности не более 1 мс ; напряжение питания - 24 В 2. Transducer Electronic Data Sheet, обучения, принципам проектирования каналов измерения в системах автоматизации экспериментальных исследований, испытаний и управления с использованием интеллектуальных датчиков 1. Перейти к блокам схемы и изучить параметры характеризующие эффективность работы каждого из блоков; I 3. Рекомендуемый режим работы при снятии АЧХ: напряжение смещения 0,7 – 0,8 В, амплитуда входного сигнала – 20 мВ. Внедрение и развитие решения Стенд применяется для исследования электрических переходных процессов асинхронного двигателя при выполнении лабораторного практикума по дисциплине «Электрический привод» на кафедре «Электротехника» Ижевского государственного технического университета. Ручка изменения направления магнитного поля Knob; 2 шкала напряженности магнитного поля А\м Meter; 3 ручка регулировки напряженности магнитного поля Dial; 4 ручка регулировки масштабной шкалы напряженности магнитного поля Knob; 5 шкала зависимости магнитной индукции от напряженности магнитного поля «Датчик»Gauge; 6 тумблер включения и выключения экспериментальной установки Horizontal Toggle Switch; 7 элемент «приема данных» Digital Indicator; 8 элемент «приема данных» Digital Indicator; 9 элемент «приема данных» Digital Indicator; Блок-диаграмма ВП содержит Рис. Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе LabVIEW 7. Достаточно лишь элементарных практических навыков пользователя ПК. · гнезда «Изм1» и «Изм2», с которых измеряемый сигнал подается на вход аналого-цифрового преобразователя и далее – в компьютер; входное сопротивление – около 2 МОм; · гнезда для подключения исследуемых узлов; · кнопки для коммутации и управления исследуемыми устройствами; · индикаторные светодиоды; · кнопки для управления величиной постоянного напряжения и индикатор цифровой вольтметр этого напряжения; · гнезда Г1 и Г2 соединенные с коаксиальными разъемами на задней стенке стенда, предназначенными для подключения внешних приборов.

Описанные процессы могут быть поданы на вход стандартных радиотехнических цепей. Создание пригодных для тиражирования лабораторных практикумов в виде автономных лабораторных стендов на основе ПК и относительно несложных внешних программно-аппаратных комплексов. Частотный диапазон, в котором работают модули формирователя и широкополосного усилителя, составляет от 0,2 до 20 МГц. Описание решения Стенд состоит из блока управления и измерения, персонального компьютера и исследуемого двигателя. В настоящее время модули применяются для разработки прототипа ультразвукового доплеровского расходомера для двухфазных потоков. Автоматизированный стенд формирования электромагнитного поля для испытаний изделий авионики При выполнении научно-исследовательских работ и проведении аварийных исследований авиационной техники с целью определения причин отказов приходится оценивать чувствительность изделий авионики к воздействию внешних электромагнитных полей.

По мнению большинства психологов, именно в кратковременной памяти человека происходят процессы принятия решений. Очевидно, что ошибка ε будет минимальна при совпадении искомых коэффициентов ε с соответствующими параметрами исследуемого процесса a2м →a2, a1м →a1, a0м →a0 => ε 2→0. Включите радиоизмерительные приборы.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................