Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Повышение производительность процесса испытания СПП

Нелинейный вид ВАХ требует снятия показаний в 8-10 точках, что по времени занимает 10-15 минут. После запуска двигателя внутреннего сгорания 4 электротормоз 2 создает постоянный тормозящий момент, воздействующий на коленчатый вал двигателя внутреннего сгорания 4. Приборы полупроводниковые силовые. Такая система контроля цементирования скважин не позволяет достаточно точно контролировать процесс цементирования. Дискретный алгоритм PID регулятора. Создания прототипа динамической системы, работающего в натуральном масштабе времени, возможно, только на высокоскоростных вычислительных системах. Учитывая экспоненциальную нелинейную зависимость NTC термистора с обратным коэффициентом граф. Обширная библиотека анализа данных содержит функции генерации сигналов, их обработки, фильтрации, статистической оценки параметров, что существенно облегчает решение поставленных задач. Сложно себе представить современный мир без применения систем автоматизированного управления движением. Несинхронное прерывание, выполняемое ключевыми элементами, является свойством структуры процессора, реализующего численных метод интегрирования. Данная работа осуществляется на основе технологий National Instruments.

Лицевая панель ВП испытательно-измерительного комплексе вкладка с представлением ВАХ испытуемого диода КД2969 при различных температурах полупроводниковой структуры Внедрение и развитие решения Разработанный способ определения RthjC и комплекс аппаратуры применим для диодов, тиристоров и симисторов в корпусном исполнении на токи от 1 А до 3200 А. Отражает зависимость аналоговой температурной стабилизации системы при периодическом включении нагрузки и холостом режиме работы. Модифицированная Vl-модель системы Результаты моделирования тестовой системы уравнений представлены на рис. Скриншот программного обеспечения Таким образом, был создан управляемый от компьютера источник тока с следующими параметрами: Диапазон токов-5А. Силы человека тратятся на обслуживание соленоида, а не на научную или практическую задачу, что снижает производительность труда. В режиме повышенной точности если число используемых осей меньше максимального, поддерживаемого контроллером. Система термостабилизации активного элемента. Остановимся на этих этапах подробнее. В полученной характеристике, находится максимальное значение, которое и принимается за величину Rthjc По измеренной характеристике uhct, определяется переходное тепловое сопротивление переход-среда Zthja: В процессе определения Rthjc по данной методике дополнительно определяется вольтамперная характеристика ВАХ СПП и её параметры, такие как импульсное напряжение UfTm, пороговое напряжение UTO; и дифференциальное сопротивление rT. Этот метод основывается на экспериментальных измерениях траекторий оси заготовки, вершины резца и продольного профиля обработанной поверхности, что позволяет произвести построение на экране монитора виртуальной копии будущей детали, рассчитать ожидаемые показатели точности и осуществить управление технологическим процессом таким образом, чтобы получить максимальную производительность при отсутствии брака. В электронной тетради предусмотрен ряд инструментов, повышающих производительность работы: установка режима «Поверх всех окон»; изменение прозрачности окна; быстрое переключение между окном электронной тетради и главным окном LabWorks. Потенциальные возможности использования результатов исследования ДВС при неустановившихся режимах составляет повышение экономичности 15-20%, производительность машинно-тракторных агрегатов на 15-20%. Постановка задачи обработки видеоизображений Большинство алгоритмов идентификации по видеоизображению основаны на использовании цветовых признаков в качестве информативных. Огарева для проведения лабораторных работ и был применен при исследовании качества изготовления автотракторных диодов КД2969 на предприятии ОАО «Орбита» г. При этом достигнуто существенное повышение производительность процесса испытания СПП, измерения и определения электрических и тепловых параметров. В шпинделе станка установлена прецизионная оправка, овальность и биение которой не превышают 0,2 мкм.

Корпорация National Instruments предлагает красивое и изящное решение этой проблемы - программно - аппаратный комплекс Motion, демонстрирующий как высокую производительность, так и гибкость. Написание графического интерфейса для сбора и обработки данных с использованием Nl DAQmx API 2. При этом теряется производительность моделирующей системы в целом.

Гидровакуумный смеситель представляет собой камеру с диффузором, пере­ходящим в выкидную трубу 4. Как показывает практика, возрастающие требования к прецизионности и быстродействию заставляют отказаться от универсальности и гибкости создаваемых систем в пользу "одномодульности", т. Отсутствие ключевых элементов на выходах интеграторов отличает эту модель от схемы рис.

Направление, связанное с использованием микропроцессоров в моделирующих системах, позволяет создать широкий спектр средств моделирования, которые равномерно покрывают область «быстродействие - точность». Перспективы внедрения и развития решения Среда программирования LabVIEW и технологии NI позволяют строить системы видеонаблюдений реального времени с реалистической цветовой раскраской для черно-белой видеокамеры. Схема измерения ВАХ солнечного модуля. По завершению серии испытаний и анализа существующей системы температурной стабилизации, выдаются проверенные параметры, удовлетворяющие заданным техническим требованиям рис. Учитывая стационарность ПрО, разделим наиболее важные характеристики эффективности на три группы: надежность функционирования, стоимость эксплуатации и производительность.

Все описанные алгоритмы были реализованы в программной среде LabVIEW, что позволило производить автоматизированное определение искомых параметров. Программа для демонстрации написана на LabVIEW 8.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................