Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Моделирование и оптимизация управления качеством мясных изделий в процессе тепловой обработки

Имитационное моделирование погрешностей канала измерения температуры. Моделирование эхолокатора с фазированной антенной решеткой VI. Объектами внедрения лабораторного комплекса являются технические вузы, техникумы и училища, а именно кафедры, преподающие базовый инженерный курс «Детали машин и основы конструирования» и смежные с ним дисциплины «Основы проектирования машин», «Прикладная механика», «Динамика машин», «Экспериментальная механика» и др. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW 1. На лекциях с помощью видеопроектора демонстрируется построение виртуальных моделей цепей и с помощью соответствующих виртуальных приборов режимы их работы. Примеры тематики выпускных работ Лабораторная установка "Доплеровский измеритель скорости" Установка для демонстрации селективных свойств колебательного контура Исследование обращенного маятника Модель распространения гидроакустических сигналов в плоском однородном слое Система управления/обработки для многоканального радиометрического приемника 3-х мм диапазона длин волн Дифференцирование и интегрирование сигналов на базе Nl ELVIS Модель распространения гидроакустических сигналов в плоском однородном слое Простейшие математические модели авторулевого Исследование спектра собственных частот тонкой упругой оболочки Моделирование канала связи с мобильными высокоскоростными объектами Исследование спектра собственных частот тонкой упругой оболочки с помощью пакета LabVIEW Распределение Вигнера - Билля Практическое освоение функций программы LabVIEW на примере создания игры "Русское Лото" Обучение поддерживалось электронной версией учебного пособия, разработанного в рамках национального проекта СЮ. Минимизация ошибок первого рода. Представляет интерес область Iср = 108-110 %.

Алгоритм определения параметров модели Моделирование Численное решение дифференциального уравнения Как отмечалось выше нам задано дифференциальное уравнение третьего порядка: где xt - функция, определяющая воздействие на вход системы; yt - функция выходной отклик системы; a2, a1, a0, К- постоянные коэффициенты. Описание решения В рамках работы было принято решение реализовать типичный универсальный цифровой вольтметр со следующими характеристиками: диапазон измерения напряжения переменного тока: 1 mV - 500 V; диапазон измерения напряжения постоянного тока: 0,1 mV - 1000 V; предел допустимой основной приведенной погрешности: - измерения напряжения постоянного тока ±0,1 %; - измерения напряжения переменного тока ±0,1 %; частотный диапазон 0-100 kHz.

Например, для нормирующих усилителей была предусмотрена возможность перехода в режим насыщения. Для удобства пользователя каждый Label входящих и исходящих параметров на передней панели подписан.

Моделирование и расчет схем цепей и устройств выполняется в среде Multisim 8 с формированием электронных отчетов. Тогда входному сигналу xt будет соответствовать выходной сигнал модели yMt=fMt, a2м, a1м, a0м. На практике ширина полосы по вертикали составляла 3 отсчета сигнала, что отвечает длительности отклика измерительного тракта эхолота на одиночный импульс.

Предполагая потоки отказов и восстановлений простейшими и пренебрегая членами высших порядков малости, получим: где Р0 - вероятность исправного состояния объекта в начальный момент времени, характеризуемая коэффициентами готовности или использования; 1-Р0 - вероятность неисправного состояния объекта к начальному моменту времени его применения; Pt - вероятность безотказной работы; \/τ-вероятность восстановления объекта за время τ= Тв; Pt - τ - вероятность безотказной работы объекта за оставшееся время t - τ, безусловно, достаточное для его восстановления. Преемственность дисциплин «Моделирование систем» и «Автоматизация проектирования систем и средств управления» 1. Создание виртуальных приборов распространяет эту тенденцию и на лабораторный практикум. ПО окончании работы с виртуальным стендом студент должен произвести теоретический расчет суммарной погрешности данного измерительного канала. Выбрав в правой части пользовательского интерфейса в закладке «Выбор средств измерения» закладку «Первичный преобразователь», нужно выбрать необходимый первичный преобразователь из списка приборов. На основании результатов проведенных работ разработан лабораторный практикум: - для изучения показателей качества электрической энергии; - для изучения процессов, происходящих в электроэнергетической системе, при подключении генераторов на работу параллельно питающей сети.

Перспективы развития В рамках стратегии развития Учебного Центра предполагается осуществить выполнение следующих мероприятий: проведение исследований в области интеграции технологий National Instruments и WiFi на основе D-Link; разработка концепции студенческого инкубатора технологий National Instruments; совершенствование программы профильной школы выходного дня «Юный исследователь»; проведение ежегодной олимпиады по LabVIEW среди студентов колледжа; проведение конференций СНО по тематике технологий National Instruments; создание сайта Учебного Центра; подготовка и проведение Всероссийской олимпиады среди ССУЗов по программированию в среде LabVIEW; участие во Всероссийской олимпиаде по программированию в среде LabVIEW; участие в международной научно-практической конференции «Образовательные, научные и инженерные приложения в среде LabVIEW и технологии National Instruments»; проведение публичных мероприятий дни открытых дверей, ознакомительные курсы, адресную рассылку периодической печати, публикацию материалов и расписаний курсов в периодической печати и Интернет сети по ознакомлению специалистов и преподавателей ВУЗов, ССУЗов, организаций, предприятий с работой Центра, LabVIEW и технологиями National Instruments. Интерфейс блока "Характеристики нелинейных цепей" Внешний вид интерфейса блока "Характеристики нелинейных цепей" представлена на рис.

Данная работа является примером разработки виртуальных лабораторных работ по дисциплинам «Метрология, стандартизация и сертификация», «Технические средства измерений», «Технологические измерения и приборы» и других, где необходимо применение виртуальных приборов. Преимущества технологий National Instruments Внедрение технологии National Instruments для исследования переходных процессов, происходящих в электроэнергетических системах, позволило проводить физическое моделирование и сбор данных для проведения лабораторных практикумов по дисциплинам: «Электроснабжение промышленных предприятий», «Автоматизация технологических процессов и производств». Традиционные пути решения этой проблемы состоят во введении различного рода экспертных систем в т. Метод, описанный в работах 2,5, является новой модификацией метода Эйлера. Ответы студентов на экзамене также сопровождаются демонстрацией соответствующих моделей. Введем погрешность метода ε 2=Ф1—Ф2. В электронной тетради предусмотрен ряд инструментов, повышающих производительность работы: установка режима «Поверх всех окон»; изменение прозрачности окна; быстрое переключение между окном электронной тетради и главным окном LabWorks. После запуска двигателя внутреннего сгорания 4 электротормоз 2 создает постоянный тормозящий момент, воздействующий на коленчатый вал двигателя внутреннего сгорания 4. На два других входа сумматора, подаются сигналы с выхода первого интегратора d2y/dt2, с выхода второго интегратора dy/dt выходной сигнал yt с соответствующими весовыми коэффициентами -a2, -a1, -a0.

В основе фильтрации лежит диффузное рассеивание света в матовом слое. На рисунке 1 изображен общий случай схемы электрической части модели. Использующих технологии искусственных нейронных сетей.

Поэтому вопрос заключается в том как получить fE из измеренного и сохраненного в памяти анализатора спектра РК’.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................