Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Имитационное моделирование в задачах разработки АСУТП

Описание профилометра В разработанном приборе контроль профиля осуществляется с помощью триангуляционного лазерного датчика расстояний, измеряющего в процессе сканирования детали например, мембраны высоту точек контролируемого профиля относительно базовой поверхности датчика. В этих операциях теряется часть полезной информации, появляются дополнительные погрешности, не продуктивно используется время занятий.

Реальные ситуации принятия решений отличаются возрастающей сложностью и размерностью решаемых задач, высокой динамичностью процессов, турбулентностью «внешней среды» и неполнотой информации о последствиях принятых решений. Удобным способом при разработки скрипта обработки является 3D визуализация дефектов на пятой стадии обработки рис. Измеренную и теоретическую частотные характеристики можно совмещать на экране компьютера, при этом автоматически подбирать параметры реальной цепи. Буранов LabVIEW 7: Справочник по функциям - М. УКИ разработан для реализации способа оценки искрения машин постоянного тока 2. Средний уровень, в свою очередь, разделяется на два подуровня: верхний - подуровень контроллера реального времени и нижний -подуровень реконфигурируемого шасси со встроенной программируемой логической интегральной схемой. Для осуществления ввода/вывода использовался пакет утилит и драйверов DAQmx base v. Для реализации САР электромагнитного момента двигателя на базе системы ТПН-АД требуется наличие сигнала обратной связи по моменту. В этом случае мы говорим о сложной ситуации принятия решения или проблемной ситуации принятия решения. Кроме того, осуществляется оптимизация переменных в соответствии с их типом. Благодаря универсальности, простоте эксплуатации, прямому сопряжению с компьютером и другими достоинствами они с успехом заменяют традиционные измерительные приборы. Отчасти это можно объяснить тем, что перед средой графического программирования LabVIEW не ставилась задача поддержания полноценного графического редактирования. Задачами нижнего уровня является - получение целеуказаний со среднего уровня; - регулирование скоростей приводов; - обработка информации с датчиков скорости и конечных выключателей. Рисунок 3 - Силовой блок для измерения вольтамперных характеристик солнечных элементов и батарей с «трансформаторным» формированием сканирующего сигнала Возможность оперативного подключения того или иного силового блока с учетом вышеизложенных особенностей их работы, позволяет проводить измерения вольтамперных характеристик любых солнечных элементов и модулей. А и анодного напряжения в диапазоне 0. Импульсный отклик «громкоговоритель + микрофон» хранится в виде таблицы. Описание решения Система рис. Также визуально можно видеть симметрию структуры, которая располагается в центре страты и равноудалена от стенок трубки. Совместное использование пакетов LabVIEW и MATLAB в задачах эхокомпенсации и выравнивания каналов связи // Современная электроника. На вкладке меню Осциллограммы рисунок 4 показываются временные диаграммы сигнала, отображающие ход эксперимента.

Если все требования вы полнены, студент получает «удовлетворительно». А изображен объект измерения, изгоровленный без искажения кон тролируемых параметров. Отчет по работе должен содержать схему арифметического устройства и временные диаграммы тестовых сигналов. Пусть Ф3 - решение задачи Ф2, полученное при реализации конкретного метода на конкретной ПЭВМ. Задача вычисления точного значения количества периодов и частоты дискретизированного сигнала является весьма актуальной при спектральном анализе сигналов спектрометров.

Задача объективного контроля инструментов может быть решена на базе компьютерных технологий. Принтер контролирует наличие и натяжение термоленты. Для решения указанных вопросов была разработана специальная программа, позволяющая оценивать уровень затухания, исходя из следующих факторов: 1 - паспортных значений обычно задаваемых параметров антенных устройств, таких как коэффициент усиления антенны, ширина диаграммы направленности по заданному уровню и интенсивность бокового излучения в горизонтальной и вертикальной плоскостях, уровень обратного излучения, коэффициент перекрытия частотного диапазона; 2 - технологических погрешностей, эксплуатационных и временных нестабильностей позиционирования антенных устройств, задаваемых углами отклонения главного лепестка диаграммы направленности от требуемого направления в горизонтальной и вертикальной плоскостях и углом поворота антенного устройства относительно этого направления; 3 - картографических данных или данных предварительных измерений, представленных в электронном виде матрицей высот точек ландшафта и застройки относительно уровня мирового океана в зависимости от их координат широты и долготы с приемлемым шагом. Исходя из вышеизложенного, авторами была поставлена задача по созданию системы статистической обработки данных измерительного эксперимента, которая позволяла бы: определять параметры распределения входной величины, проверять согласие закона распределения полученных выборок с теоретически заданным, выполнять проверку на нормальность, однородность, кроме того, генерировать случайные числа с заданным законом распределения, сохранять промежуточные и окончательные результаты, используя в качестве источников данных текстовые файлы, первичные измерительные приборы и другие внешние устройства, работающие в режиме реального времени и связанные с компьютером посредством высокоскоростных интерфейсов передачи данных USB, PCI, PCIe, а также аналоговые сигналы с их последующей оцифровкой. Система диагностики двигателей постоянного тока Двигатели постоянного тока используются в задачах, где необходимо плавное регулирование скорости вращения в широком диапазоне. Следует отметить, что измерительная задача не является традиционной для применения подобных методов, поэтому большое значение уделяется изучению метрологических характеристик и погрешностей оценки параметров сигнала такими способами5. Все поставленные в рамках проекта задачи были успешно решены, а эти решения воплощены в единой системе автоматизированного управления и сбора данных. Траектории движения пылинок в течение времени наблюдения 4 с, 0.

Расположение элементов управления и индикации Работа с виртуальным стендом Для выполнения лабораторной работы выдается задание для написания и отладки программы для стенда. Специальные требования к ресурсам используемого персонального компьютера не предъявляются. Алгоритм подготовки тренажера к работе: - необходимо произвести видеосъемку участка пути, которая будет воспроизводиться на тренажере; - во время видеозаписи требуется постоянно фиксировать скорость движения локомотива; - при воспроизведении на тренажере записанного видео, нужно сравнивать две скорости: скорость локомотива, с которой он двигался во время записи видео со скоростью, с которой должен двигаться состав при текущем положении ручек тренажера и по результатам сравнения управлять скоростью воспроизведения видео файла; Задача описываемого устройства - измерять скорость движения локомотива и фиксировать ее. Другая задача, связанная с выбором оптимального режима записи динамической голограммы или проведением исследовательских работ, требует оперативного контроля процесса записи голограммы. Можно выбирать вид тестового сигнала речь или шум, задавать отношение сигнал-шум на входе сигнала dk, выбирать тип алгоритма NLMS или RLS, а также задавать параметры адаптивного фильтра.

Вычисления проводятся при больших, но не бесконечных сопротивлениях шунта и относительно малых последовательных сопротивлениях. ВП первоначально отображает полученные оптические изображения контролируемого изделия которые могут быть последовательно просмотрены: кнопками < и >, а после обработки - обработанное изображение. Частота fN=1/2t0 называется частотой Найквиста. В блоке «Частотные характеристики цепей» есть встроенная функция сохранения используемых данных, позволяющая многократно повторять необходимые исследования.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................