Стенд работает следующим образом
Несмотря на это, электротехнические кафедры вузов, учитывая состояние лабораторного оборудования и исходя из специфики направлений подготовки специалистов, все шире внедряют компьютерные лабораторные работы в различных средах схемотехнического моделирования, в том числе при дистанционном обучении. В при снятии напряжения с гнезда «1:1». Передняя панель или система панелей разрешает оптимально планировать проведение эксперимента. Этот переход, практически сохраняя функциональные возможности позволит снизить затраты и расширить номенклатуру используемых компьютеров за счет ноутбуков, а в ряде случаев и КПК.
На рисунках 2 и 3 представлены схема эксперимента "Измерение сопротивления мостовым методом" в СМ МАРС и передняя панель этого стенда в LabVIEW соответственно. В качестве теоретических описаний в Блоке заложены модели характеристик резонансного усилителя и детектора. Представлена, выполненная студентами, сборка на макетной плате устройства для демонстрации работы свойств двоичных счётчиков, дешифраторов двоичного кода в код семисегментного индикатора и десятичного индикатора. Прогнозирующий алгоритм выполняется на контроллере реального времени. Обратный маятник Целью данной работы является разработка лабораторного стенда, представляющего собой обратный маятник и систему управления им. Вспомогательные элементы и гнезда на верхней панели стенда. При этом многие вузы выбирают в качестве основы лабораторных стендов продукцию корпорации National Instruments NI, позволяющую эффективно обучать решению задач, актуальных для различных областей науки, промышленности и образования. Блок-диаграмма прибора в среде LabVIEW. В данном блоке как и в блоке «Характеристики нелинейных цепей» для запуска измерения пользователю необходимо нажать на кнопку «Запуск», при этом автоматически будет выбран масштаб диапазон измерений по осям X и Y. Расположение элементов управления и индикации Работа с виртуальным стендом Для выполнения лабораторной работы выдается задание для написания и отладки программы для стенда.
Физическая модель системы электроснабжения Пульт отражает собой модель реального объекта и представляет собой виртуальное изображение электроэнергетической системы, осциллографа для регистрации изменений напряжений и токов, уровневых движков скорости вращения гонного двигателя, тока обмотки возбуждения и кнопок включения генератора, гонного двигателя, короткого замыкания, отключения питания модели. Лабораторный практикум: изучение адиабатического расширения газов 1. Используемое оборудование и ПО Для разработки учебного стенда использовалась версия 8. Ряд мощностей ламп изменяется в диапазоне от единиц ватт лампы дежурного освещения до десятков киловатт карьерные лампы. Наличие блока расшифровки результатов идентификации позволяет сформировать дифференциальное уравнение для каждого из исследуемых рабочих процессов: частота вращения коленчатого вала, расход воздуха, расход топлива и предоставить его потребителю. Описание решения Стенд состоит из блока управления и измерения, персонального компьютера и исследуемого двигателя. GPIB у термоконтроллера и источника транспортного тока позволяет унифицировать подходы к управлению электрическими и тепловыми режимами работы стенда. Произведите внешний осмотр стенда и убедитесь в целостности индикаторных светодиодов, надежном креплении крепежных винтов, отсутствии оторванных проводов в монтаже и т. Блок управления питанием и сбросом. Очевидно, что потребности современного потребителя образовательных услуг значительно изменились. На верхней панели изображена условная схема узла. Имеет 8 каналов формирования пачек импульсов со скважностью 2. Лабораторный стенд "Интеллектуальные датчики с электронными таблицами" Разработанный практикум состоит из 3-х лабораторных работ: > Основные свойства интеллектуальных датчиков. Виртуальный прибор снабжен программой формирования случайной погрешности, что гарантирует реальную картину процедуры измерения. При построении графика с помощью Excel решается важная для солнечных модулей задача - нахождения точки на кривой вольтамперной характеристики, которая соответствует максимальной вырабатываемой мощности. Электрическая принципиальная схема стенда С использованием технологии создания виртуальных приборов в программной среде LabVIEW был разработан прибор позволяющий автоматизировать процесс измерений, обработки сигналов, отображения и архивирования результатов эксперимента. Для моделирования применялись средства программного пакета Nl System Identification Toolkit.
В этом случае амплитуда выходного сигнала составляет не менее 300 Вольт на нагрузке 5 Ом. Такой подход позволяет использовать последние достижения в области физического эксперимента, обеспечить проведение НИРС по самым актуальным и перспективным направлениям, включая нанотехнологии, относящимся к приоритетным направлениям развития науки, технологии и техники РФ, на современных электрофизических стендах и установках. Прецизионный измерительный мост А-300, предназначен для одновременного измерения и индикации температур в диапазоне от -100 °С до +1200 °С, с погрешностью измерения 0,001 °С.
На блок-диаграмме создаем петлю по условию 10, в которую помещаем два формульных узла 11, один из которых содержит функцию построения петли, второй предназначен для подбора входящих данных «сдвиговый регистр» 12, содержит три различных подпрограммы. Внедрение и развитие решения Стенд внедрён в лабораторном практикуме по дисциплине «Электрооборудование в промышленности» на кафедре «Электротехника» Ижевского государственного технического университета. Таким образом, процесс определения параметров модели сводится к двум операциям: Моделирование; Определение ошибки моделирования и коррекция регулировка параметров модели. Виртуализация учебных работ профессионального характера создает, предпосылки для более глубокого познания свойств исследуемых объектов и процессов на математических моделях, проведение параметрических исследований и оптимизации. После успешного прохождения теста пользователь может получить моментальный доступ при отсутствии очереди, либо отправить запрос для согласования времени проведения работы и получения пароля доступа к реальному управлению лабораторной установкой.
Исследования
Стендовые испытания (виброакустика, тензометрия и т.п.)
- Автоматизированная система измерения параметров дизельных двигателей типа В-46
- Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments
- Контроль духовых музыкальных инструментов
- Лабораторный комплекс по исследованию элементной базы машин
- Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)
- Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава
- Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах
- Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем
- Магнитометрический метод в дефектоскопии сварных швов металлоконструкций
- Перспективы использования машинного зрения в составе системы управления движением экраноплана
- Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии
- Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов
- Стенд для исследований рабочих процессов ДВС в динамических режимах
Радиоэлектроника и телекоммуникации
- LabVIEW в расчетах радиолиний систем передачи данных
- Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров
- Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом
- Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS
- Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений
- Инструменты для исследования выравнивания электрических каналов
- Инструменты для исследования компенсации эхо-сигналов
- Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания
- Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений
- Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера
- Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW
- Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала
- Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1
- Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW
- Блок гальванической развязки для устройства сбора данных NI USB-6009
- Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников
- Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля
- Портативная система для определения показателей качества электрической энергии
- Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK
- Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008
Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника
- Автоматизированная установка по измерению временных характеристик реверсивных сред
- Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур
- Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств
- Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции
- Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW
- Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах
- Комплекс автоматизированной диагностики крови
- Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления
- Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока
- Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность
- Расчет переноса аэрозоля и выпадения осадка в реальном времени
- Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW
- Установка для измерения вольтамперных характеристик солнечных элементов и модулей
- Применение NI VISION для геометрического анализа в медицинской эндоскопии
- Система температурной стабилизации
- Управление движением с помощью программно - аппаратного комплекса NI - Motion
- Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов
- Система управления асинхронным тиристорным электроприводом
- Лазерный профилометр
- Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе
- Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков
- Автоматизированный стенд рентгеновской диагностики плазмы
- Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний
- Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов
- Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии
- Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E
- Микрозондовая система для характеризации механических свойств материалов в наношкале
- Метод траекторий в исследовании металлообрабатывающих станков
Продолжение справочного пособия
>>> | 0 !................... |
20 !................... |
40 !................... |
60 !................... |
80 !................... |
100 !................... |
120 !................... |