Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Обязательным элементом учебной дисциплины Электротехника является лабораторный практикум, предусмотренный государственным образовательным стандартом

Блок-диаграмма прибора в среде LabVIEW. Выбор максимального и минимального значений напряжения на датчиках 3. Достаточно лишь элементарных практических навыков пользователя ПК. Особенно значительны частотные искажения. В электронной тетради предусмотрен ряд инструментов, повышающих производительность работы: установка режима «Поверх всех окон»; изменение прозрачности окна; быстрое переключение между окном электронной тетради и главным окном LabWorks. Однако сам процесс выполнения работ дома, оформление и отправка на сервер кафедры электронных отчетов не вызвали затруднений. Рабочим местом пользователя является персональный компьютер с установленным специализированным программным обеспечением.

Обязательным элементом учебной дисциплины "Электротехника" является лабораторный практикум, предусмотренный государственным образовательным стандартом. Прибор позволяет определять для фаз асинхронного двигателя огибающие среднеквадратичных значений токов, огибающие активной мощности и мгновенных значений напряжений для отдельных фаз. Лабораторная панель содержит все типы характерных элементов электрической цепи: регулируемый источник электрической энергии, индуктивную катушку с ферромагнитным сердечником, реостат, батарею конденсаторов.

Разработка же лабораторий с удаленным доступом к экспериментальным установкам и полномасштабное а не мгновенное снятие и пересылка данных проведение работ в онлайновом режиме с доступной оплатой - дело будущего. Остановка программы осуществляется нажатием кнопки «stopF» на лицевой панели виртуального прибора. Москва: Горячая линия-Телеком, 2005. Несмотря на это, электротехнические кафедры вузов, учитывая состояние лабораторного оборудования и исходя из специфики направлений подготовки специалистов, все шире внедряют компьютерные лабораторные работы в различных средах схемотехнического моделирования, в том числе при дистанционном обучении. Проверка знаний студентов, как выполнивших работы в бригаде на натурных стендах, так и выполнивших их индивидуально в виртуальной лаборатории в компьютерном классе, подтвердила общеизвестный факт, что уровень усвоения материала зависит от личной заинтересованности студента, его мотивации к изучению дисциплины. Каждый цикл начинается выбором угла и заканчивается занесением значений полей статического давления в файл. Переключателем SB1 можно отключить питание схемы измерения токов, в этом случае можно питать оставшуюся схему от USB порта компьютера. Перед студентами 2-го или 3-го курса втузов, на которых изучается дисциплина «Электротехника и электроника» в ограниченном объеме 120-250 часов, ставятся следующие задачи: - научиться собирать схемы с подключением к ним измерительных приборов и источников энергии; - задавать параметры элементов схемы источников входных воздействий и пассивных элементов или функциональных блоков в соответствии с выданным преподавателем вариантом задания; - устанавливать режим работы на панелях измерительных приборов, чтобы получить результаты в привычной для него форме; - с помощью компьютера или вручную построить графики и диаграммы и провести анализ полученных результатов. Многолетней практикой доказано, что процесс познания электротехники неразрывно связан как с теоретическим осмыслением явлений и процессов, имеющих место в электронных устройствах, так и с экспериментальными исследованиями схем цепей и устройств и их компьютерных моделей в лабораториях. Разработанная информационно-измерительная система содержит серверную часть системный блок ПК и исследуемый объект, подключенный через плату сбора данных, а также клиентскую часть, которая может быть установлена на любом компьютере, включенном в сеть.

В созданной нами виртуальной лаборатории по электротехнике реа лизовано 20 лабораторных работ в среде Multisim, в соответствии с перечнем лабораторно-практических занятий примерной программы общепрофессиональной дисциплины вузов "Общая электротехника и электроника", рекомендованной Минобрнауки Российской Федерации для неэлектротехнических направлений подготовки бакалавров 550000 - технические науки и для неэлектротехнических направлений подготовки дипломированных специалистов 650000 - техника и технология. При этом разработанные нами 30 схем электрических цепей в среде моделирования Multisim 8, предоставленной нам корпорацией National Instruments, прошли тестирование в компании Electronics Workbench и записаны ею на мастер-диске вместе с демо-версией Multisim 8 Student Demo. Извлечение данных в виде двумерного массива 7. Электронная тетрадь студента см. Внедрение и развитие решения Стенд применяется для исследования электрических переходных процессов асинхронного двигателя при выполнении лабораторного практикума по дисциплине «Электрический привод» на кафедре «Электротехника» Ижевского государственного технического университета. Электротехника и электроника в экспериментах и упражнениях. Подобные виртуальные лабораторные практикумы эффективно реализуются средствами пакета графического программирования LabVIEW.

Лабораторный комплекс апробирован и внедрен в учебный процесс МАТИ. Разработанные информационно-измерительные системы использованы для создания автоматизированных лабораторных практикумов по дисциплинам электротехнического профиля теоретические основы электротехники, электротехника и электроника, технические измерения в политехническом институте Сибирского федерального университета и других вузов Красноярска.

Огибающая среднеквадратичных значений тока каждой фазы выводится на график блок «Waveform chart»1. Электрическая принципиальная схема стенда на рис.

В настоящее время разрабатывается новая версия программного обеспечения ИИС, учитывающая накопленный опыт. Внедрение и развитие решения Учебный лабораторный стенд с написанным под него программным обеспечением используется для проведения лабораторной работы на кафедре «Электротехника, теплотехника, гидравлика и энергетические машины» ГОУ МГИУ.

Внедрение и развитие решения Блок гальванической развязки внедрен в лабораторном практикуме на кафедре «Электротехника» Ижевского государственного технического университета в составе различных виртуальных измерительных систем, применяемых в лабораторных практикумах по дисциплинам: «Электрический привод», «Электрооборудование промышленности». Поэтому разработка и использование виртуальных лабораторных практикумов является актуальной задачей, решение которой способствует большей эффективности учебного процесса.

Набиуллин, Комплекс для исследования характеристик светильников с газоразрядными лампами, Известия ТулГУ. В дальнейшем предполагается внедрение сетевых технологий при проведении лабораторной работы и соответствующая корректировка программного обеспечения. Комплексное использование в учебном процессе физического эксперимента и виртуального практикума в среде LabVIEW обеспечивает эффективное освоение студентами дисциплины "Электротехника".

Внедрение и развитие решения Стенд внедрён в лабораторном практикуме по дисциплине «Электрооборудование в промышленности» на кафедре «Электротехника» Ижевского государственного технического университета. Отметим, что несмотря на возможности программы Multisim: - использовать модели идеальных источников напряжения ИН и тока ИТ, трансформаторов, вентилей и других элементов и приборов; - устанавливать нестандартные параметры пассивных элементов существенно меньше или существенно больше параметров других элементов; - выбирать нестандартные функции источников энергии быстро изменяющиеся скачкообразно в окрестности некоторых точек; - собирать схемы электрических цепей с топологическими вырождениями контуров с идеальными ИН и ветвями с нулевыми сопротивлениями, разрезы схем с идеальными ИТ и ветвями с нулевыми проводимостями, необходимо учитывать ограничения программы и возможности ЭВМ, и обращать внимание на корректность поставленной задачи исследования.

Использовался стабилизированный источник питания. Цифровое устройство на макетной плате Виртуальная модель цифрового устройства в программе Multisim 9 Богатые возможности имеются по моделированию систем электроавтоматики. Кроме того, эти параметры могут регулироваться в широких пределах. По указанным дисциплинам проводятся лекционные, практические семинарские и лабораторные занятия, а также выполняются домашние задания и курсовые работы в зависимости от конкретного учебного плана.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................