Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Начальное смещение и Диапазон смещения задают параметры сигнала постоянного уровня

Элемент "Число уровней" определяет количество значений характеристики цепи, необходимых для построения её графика. Его свертка с сигналом удаленного абонента xk образует эхо-сигнал dk, где к - индекс дискретного времени.

Перемноженные мгновенные значения тока и напряжения лампы определяют мгновенную мощность. Внедрение и развитие решения На данный момент система статистической обработки результатов измерительных экспериментов применяется на кафедре информационно-измерительных систем Национального авиационного университета в прикладных целях для обработки данных получаемых при диагностике авиационной техники, а также для разработки и тестирования новых методик статистического анализа экспериментальных данных. На основании этих сигналов осуществляется отключение пучка и запрет подачи запускающих импульсов на электронную пушку ускорителя. Р компонент алгоритма PID регулятора.

Рисунок 4 - Контактный блок для измерения вольтамперных характеристик солнечных элементов Для управления процессом измерения и обработки вольтамперных характеристик, удобного представления получаемых данных была написана программа виртуального измерительного прибора в среде LabVIEW+DIADem. Устройство интерфейсное RS-232C обеспечивает согласование уровней сигналов и гальваническую развязку измерительных цепей прибора и ПЭВМ. Закуплены учебно-исследовательские установки для обработки сигналов, многофункциональные измерительно-управляющие модули, лицензированное программное обеспечение, модульная аппаратура для управления и регистрации процессов, комплексы для генерации и приема сигналов, универсальные платы ввода-вывода и т. Ограничения на точность формирования и приема сигнала накладываются используемым аппаратным обеспечением. Из всего вышесказанного очевидна актуальность разработки стендов для исследования двигателей внутреннего сгорания при неустановившейся нагрузке. Точность определения частоты в спектре входного сигнала является вполне определенной и зависит от количества периодов р сигнала. В настоящее время частота вращения определяется с помощью оптического энкодера, установленного на оси.

Программный код клиентского приложения Для дистанционного доступа и управления лабораторными экспериментами через телекоммуникационные сети используется ранее созданная в КГТУ им. Синтезатор калибровочных биспектральных сигналов с частотной модуляцией // там же, с. Вторая мгновенная схема VS1 открыт; VS2 закрыт: L21 - собственная индуктивность обмотки W2l, Гн; L0B - индуктивность обмотки возбуждения ТЭД, Гн; R21 - активное сопротивление обмотки W2l, Ом; R0B - активное сопротивление обмотки возбуждения ТЭД, Ом; М2122 - взаимоиндуктивность между вторичными обмотками W21 и W22, Гн. При работе с транзисторным усилителем на его вход кроме напряжения сигнала нужно подать напряжение смещения. Описание решения Алгоритм работы АПК построен на методе анализа АЧХ и ФЧХ, основанном на сравнении двух сигналов: тестового гармонического сигнала на входе исследуемой цепи ИЦ и сигнала отклика. Когда отверстия в корпусе инструмента открыты, резонансная частота возрастает, в остальном процесс протекает так же. Аппаратная часть подсистемы измерений реализована на основе плат сбора данных PCI-6251, обеспечивающих ввод-вывод сигналов. Система сохраняет работоспособность при условиях окружающего воздуха атмосферное давление, температура, влажность, концентрация паров масла и топлива, которые не превышают значений, установленных санитарными нормами проектирования промышленных предприятий СН 245-71.

И происходит в «полевых» условиях. Все управляющие системы реализованы на базе традиционных ПИД-регуляторов, и, как правило, контролируют градиент температуры тигля, массу растущего кристалла, степень вакуума в камере. Модель системы может быть создана непосредственно в среде LabVIEW. Эти комментарии также сохраняются в архиве измерений и отображаются в табличном файле результатов и при работе с программой симулятором. Политические: повышение имиджа среднего профессионального образования СПО и, в частности, РКСИ в российском образовании; усиление позиций на рынке образовательных услуг.

Взаимодействие происходит в три этапа: установка соединения при помощи утилиты RoboTalk, отправка и прием данных при помощи утилит SetTagValue и GetTagValue и разрыв соединения. Следует отметить, что измерительная задача не является традиционной для применения подобных методов, поэтому большое значение уделяется изучению метрологических характеристик и погрешностей оценки параметров сигнала такими способами5. Ый канал может быть использован для генерации непрерывного сигнала. Эффект наложения частот, возникающий при дискретизации функции: а спектр непрерывной функции; б спектр дискретной функции fv<1/2t0 fv<fN', в спектр дискретной функции fv>1/2t0 fv>fN Для вычисления спектра дискретной функции используется алгоритм БПФ, позволяющий существенно сократить количество требуемых операций. Отражает исходные данные и результаты измерения амплитудного спектра выходного сигнала при действии на входе прежнего сигнала и указанной выше форме ВАХ нелинейного резистора. Экспериментальная проверка показала, что идентичность двух каналов соблюдается с погрешностью не более 0,1% по АЧХ и не более 10 по ФЧХ в диапазоне частот от 1 Гц до 10 кГц.

Таким образом, в ХВАМ режиме для формирования линейной развертки используется дешевая плата USB 6008 максимальная частота ввода fвв=10000Гц, частота вывода fвыв=150Гц, разрядность ЦАП и АЦП n = 10 бит, диапазон выходного напряжения AU = 0 + 5 = 5В. Реализации, закон распределения и корреляционная функция случайного процесса Алгоритм основан на методах цифровой сортировки и подробно описан в публикациях по тематике данной работы.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................