Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Для данной системы измерений с помощью программного комплекса LabVIEW

При этом отпадает необходимость в использовании коммутаторов, так как все соединения выполняются студентом вручную. McGraw-Hill Book Company, 1970. Блок-схема распределенной компьютерной информационно-измерительной системы. Использование в измерительном комплексе термоэлектрических систем регулирования и стабилизации температуры, оснащенных микропроцессорным блоком управления позволяет: - обеспечить минимальный градиент температуры в рабочей зоне 0,001 °С/см - автоматизировать процесс исследований; - стабилизировать температуру с высокой точностью; - минимизировать время выхода на рабочий режим малая инерционность термоэлектрических термостатов. Графики решений системы уравнений Графики полученных решений системы уравнений показаны на рис. Амплитуда тестового сигнала ВГ: рекомендуемая 0,1 - ЗВ; макс. Разработка метода определения параметров всплывающих газовых пузырьков по данным эхолокационного зондирования: Дипломная работа / Нижний Новгород, ННГУ, 2007 г.

Блок преобразования интерфейсный - предназначен для преобразования интерфейса RS-232 использующегося ПК в RS-485 использующийся измерительными блоками системы; 2 блок индикации - предназначен для отображения измеряемых и расчетных параметров испытуемого двигателя. Коэффициент передачи сумматора со входов U1 и U2 на выход U3 не менее 0,9 2. В качестве воздействующих входных сигналов будем использовать гармонический, треугольный, пилообразный и импульсный сигнал, которые представим как дискретную последовательность x0, x1,. Компонент алгоритма PID регулятора. Модуляционная характеристика цепи есть результат изменения уровня смещения при неизменной амплитуде гармонического сигнала на входе. Наличие двухканального АЦП позволяет одновременно обрабатывать сигналы с двух УКИ. На вкладке Количество точек для исследования выбирается количество анализируемых точек в указанном пользователем частотном диапазоне. Внедрение и развитие решения В базовой комплектации лабораторный комплекс позволяет проводить 15 лабораторных работ общим объемом 68 академических часов и охватывает практически все тематические разделы базовой дисциплины «Детали машин». Цель проведения анализа и моделирования надежности СУ заключается в существенном повышении эффективности функционирования автоматизированного производства. Блок состоит из нагревательного элемента, температура которого измеряется с помощью термопары, и вентилятора, скорость которого можно контролировать с помощью оптоэлектронного датчика.

В случае если какой-то из блоков системы ответил некорректно, запрос к нему повторяется. Для каждой из этих составляющих рассмотрены две модели: обычное функционирование и функционирование при периодической аналитической идентификации ТС ПрО.

Для управления системой в НИИ АЭИ было разработано специализированное программное обеспечение. Основным параметром инструмента являются набор частот, которые при интерференции могут давать низкочастотные колебания, вызывающие нежелательное физиологическое воздействие. Менее глобальными, но от этого не менее важными являются системы эксплуатации атомных электростанций, в свете последних событий к ним предъявляются все более жесткие требования, т. Пример моделирования трехфазной цепи в среде Multisim 8 Назначение подсистемы - предоставление студенту дидактических материалов к работам, структурированных по разделам цель работы, основные теоретические сведения, порядок выполнения работы, пример выполнения работы, каждый из которых выводится в отдельном окне многооконного интерфейса программы. Описание решения Структурная схема разработанной системы измерения приведена на рис.

Текущие значения температуры и давления среды барокамеры, снимаемые с датчиков, а также значение электрического напряжения или тока, прикладываемого к модулю, оцифровываются аналого-цифровыми преобразователями АЦП. Передняя панель интерактивной программы обработки эхограмм.

В то же время на базе широко распространенных персональных компьютеров в каждом учебном заведении могут быть созданы универсальные, легко адаптирующиеся к новым задачам многоканальные информационно-измерительные системы, которые могут быть использованы как для учебных, так и для исследовательских целей. Как и в 1, в этом проекте используется модель Смита - Хоскера, в которой учитывается шероховатость земной поверхности под зараженным облаком, а также метеорологические параметры наиболее простым образом. Гольцова были выбраны наиболее важные параметры для оценки физиологического состояния: Устойчивость уровень стабильности; Общая дисгармония стандартная; F0 - частота пульса классическая на каждом ударе монитор; F5 - частота пульса не классическая на каждом ударе эта частота расчетная и выглядит как норма для человека, т. Рисунок 1- Структурная схема автоматизированной системы управления температурой газовой среды специальной барокамеры 3.

Суммарные составляющие фазовой погрешности, вызванные такими факторами, как температурная нестабильность звукопровода, прецессия лазерного луча, нестабильность параметров электронной схемы усиления и преобразования, не превышали 0,15°. Регулирование скорости вращения подающего шнека и давления насоса происходит с помощью изменения оборотов двигателя автомобиля. Применение среды LabVIEW с использованием технологии виртуальных приборов позволило значительно упростить и сократить время разработки модели прохождения сигналов через стробоскопический осциллограф, а также системы автоматизации осциллографа Agilent 81204B DSO. Этапы проведения реального исследования: -методика создания системы самоорганизованной критичности - «песочной кучи» при помощи бункера с электромагнитным управлением.

Все работы выполняются без физического эксперимента, т. Если Вы работаете с компьютером, сигнал на вход исследуемой цепи нужно подавать с гнезд "Ген" на верхней панели стенда, а измеряемый сигнал с выхода цепи должен подаваться на гнезда "Изм" на верхней панели.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................