Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Для расчёта площади поражённой поверхности используется формула вычисления площади простого многоугольника

При измерении параметров импульса длительностью 750 пс, имеющего длительность фронта не более 150 пс, ширина спектра главного лепестка 1,333 ГГц, его форму удалось восстановить в частотном диапазоне до 1,3 ГГц рис. Если количество отсчетов невелико до 4096, то выходной сигнал рассчитывается непосредственно во временной области по формуле 1, представленной для дискретных сигналов как ряд: При большем количестве отсчетов целесообразно сначала выполнить преобразование Фурье входного сигнала, затем произведение полученных коэффициентов на отсчеты частотного коэффициента передачи, и перейти обратно во временную область путем обратного преобразования Фурье полученной спектральной плотности выходного сигнала: Такой способ вычисления более экономичен, чем прямое использование формулы 8. Для расчёта площади поражённой поверхности используется формула вычисления площади простого многоугольника. К ним относятся переключатели "Спектр-Амплитуд, хар-ка", "Модуляц-ая хар-ка" - "Другие", " "Амплитуды" - "Фазы"; - окно индикатора "Оценка результата измерений", в котором отмечается, достаточно ли принятое число выборок для обеспечения достаточно точных и устойчивых показаний прибора. На этом этапе образуется вычислительная погрешность ε 3=Ф2—Ф3.

Основная его идея состоит в использовании в качестве измерительного напряжения напряжение тепловых шумов U специально подобранного нагрузочного резистора. Лицевая панель виртуального прибора для моделирования надежности СУ с параллельно-последовательными структурами Моделирование надежности структурно сложной СУ целесообразно также прово дить в интегрированной среде визуального моделирования VisSim.

Это поле строкового элемента "Формула ВАХ", а также массивы "Обозначения" и "Значения"; - элементы управления, задающие режим работы прибора. В такой постановке эта дисциплина приобретает главенствующее положение для студентов старшекурсников технических вузов 1. Полученные в результате усреднения значения шумового напряжения записываются На последнем этапе результаты измерений выводятся на экран и подвергаются ручному усреднению при помощи курсоров. Данная работа посвящена автоматизация общего клинического анализа крови методами цифровой обработки изображений. Отражен режим определения фазового спектра выходного сигнала. Перечисленные недостатки можно устранить, если не пренебрегать величиной RL/R.

Динамические и гибридные системы. Учитывая стационарность ПрО, разделим наиболее важные характеристики эффективности на три группы: надежность функционирования, стоимость эксплуатации и производительность. Интересным является вопрос о нахождении таких значений параметра расстояния L, при которых линейный участок зависимости нулевого дифракционного порядка несколько сдвинут относительно линейных участков зависимостей первых дифракционных порядков. Лейкоцитарная формула - один из важнейших параметров клинического анализа крови, она позволяет определить, какая доля лейкоцитов каждого типа содержится в крови. Природа моделей может быть различной: материальные модели например, модель самолета в аэродинамической трубе, знаковые модели трех типов: специальные ноты, химические формулы, математические например, формула, описывающая гравитационное взаимодействие двух тел, алгоритмические программный код компьютерного приложения; словесное описание объекта явления, процесса можно также рассматривать как его модель. Виртуальный прибор подпрограмма «Лейкоцитарная формула», реализует захват изображений, обнаружение и классификацию клеток-лейкоцитов. Совсем недавно у LabVIEW была седьмая версия, в течение полутора лет появились поочередно версии 8, 8. Подходы к классификации моделей.

В работе осуществляется автоматизация этих операций методом обработки цифровых изображений аппаратными и программными средствами рис. При этом могут быть опущены несущественные и второстепенные свойства явления с тем, чтобы эта модель была доступна для исследования на данном уровне развития вычислительной техники. Пространственно-частотный анализ форменных элементов крови: Дис. После чего составляется укрупненная структурная схема надежности СУ, для которой также составляются расчетные выражения и для сложных систем процесс продолжается до тех пор, пока не останется один элемент, надежность которого эквивалентна надежности исходной СУ. Недостатки визуально-оптического метода, а именно низкая точность, субъективность оценки, высокая трудоемкость, обусловлены, в первую очередь, малым объемом выборки анализируемых частиц, что приводит к большой статистической погрешности.

Неизвестные записываются в левой части формул, причем каждая формула пишется на отдельной строке и заканчивается точкой с запятой. Выходной сигнал представляет собой свертку двух функций - входного сигнала и импульсной характеристики системы. Это связано с тем, что среда LabVIEW сразу предлагает возможные способы устранения ошибок. Все вышесказанное применимо и к компьютерным технологиям. Операция свертки описывается формулой 1, которую также называют интегралом Дюамеля: А также если известен частотный коэффициент передачи Kjω системы, то имеем представление выходного сигнала: Говоря о спектральном методе анализа прохождения сигналов через линейную систему, имеют в виду использование свойств частотного коэффициента передачи. Теоретический расчет выполняется по следующим формулам: Исходными данными для расчетов являются погрешности первичного преобразователя и класс точности вторичного прибора. Отметим, что при увеличении плеча d чувствительность уменьшается, но одновременно уменьшается и усилие, необходимое для поворота датчика, и возрастает абсолютное значение протяженности линейного участка. Экспериментальные исследования измерителей малых линейных перемещений на основе схем оптического зондирования ПАВ с ОДР проводились с использованием таймера NI PCI-6602 и супергетеродинного преобразователя частоты.



Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................