Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Параметры этих процессов задаются пользователем с использованием интерфейса Блока

Издательство Российского университета дружбы народов, 2006. Интерфейс блока «Частотные характеристики цепей» С помощью клавиш «Измер.

Общий вид экранного операторского интерфейса. Кроме того, предусмотрена возможность сохранения результатов анализа в виде графиков, заключенных в html файл Рис. Генерация возможных альтернатив достижения главной цели и расчет возможных последствий для каждого из вариантов заполнение матрицы решений.

Использование среды LabVIEW позволило создать простой и удобный пользовательский интерфейс, позволяющий динамически управлять параметрами работы АПК в соответствии с задачами пользователя. Он состоит из модуля USB-6008, элементов схемы управления нагрузкой и интерфейсного модуля, написанного на языке Visual Basic программы Microsoft Office Excel.

Интерфейс блока позволяет для всех описанных процессов наблюдать: - осциллограммы; - законы распределения и энергетические спектры; - функции корреляции. Такой режим обеспечивает наилучшее согласование выходного сигнала усилителя с УП в широком диапазоне частот. В зону стабилизации температуры, после чего выдается сигнал о готовности системы. Порядок выполнения лабораторной работы строго контролируется программой. При разработке виртуального макета для исследования свойств магнитомягких материалов использовались исключительно стандартные компоненты и функции LabVIEW. Для удобства пользователя масштаб графиков автоматически меняется в соответствии с выбранным диапазоном частот.

ПО для микроконтроллеров блоков системы написано в среде Keil uVision v 2. Передняя панель виртуального стенда представлена на рисунке 1. В тоже время, методические разработки, представляющие наглядно процесс обучения ИНС, слабо проработаны.

Аналогичным образом в представленном макете может быть реализовано автоматическое горизонтальное перемещение предметного столика по двум другим координатам. ПО окончании работы с виртуальным стендом студент должен произвести теоретический расчет суммарной погрешности данного измерительного канала. Применение среды LabVIEW с использованием технологии виртуальных приборов позволило значительно упростить и сократить время разработки модели прохождения сигналов через стробоскопический осциллограф, а также системы автоматизации осциллографа Agilent 81204B DSO. Можно применить универсальные языки программирования типа Pascal, C++, но тогда трудоемкость программирования интерфейса системного аналитика с моделью превысит трудоемкость программирования самой модели в 5-10 раз. С двух камер будут синхронно, по сигналу от внешнего триггера, захватываться изображения и через интерфейс FireWire поступать в CVS-1455, где будет производиться анализ информации и выработка управляющих воздействий. Особенно хотелось бы отметить элементы управления, находящиеся в группе Classic классические, поскольку они позволяют придать виртуальным приборам, максимальное внешнее сходство с реальными приборами. Измеренные значения отображаются графически и численно с указанием рода газа. Поэтому выбор стратегии решения сам по себе является для человека самостоятельной задачей. Прямое механическое управление микроскопом через микроконтроллер NXT осуществлялось с компьютера при помощи ВПП управления, а захват и обработка изображения другим ВПП, работа которого была синхронизирована ВПП управления. Достоинством разработанной системы измерения является возможность обработки поступающей информации в режиме реального времени, проведение преобразований и нормирование величин, а также использование различных способов представления и регистрации данных. Автоматизация технологических процессов получения дисперсных продуктов на основе виртуальных приборов Постановка задачи Быстрый прогресс компьютерных технологий и наращивание мощностей вычислительной техники, произошедший в последнее десятилетие, позволяют с успехом применять их в различных областях, в том числе и пищевой промышленности при разработке автоматизированных систем управления технологическими процессами АСУТП. Температура воды на входе, °С 0. Полагаем, что построение аппаратной части таких практикумов следует вести по модульному принципу. В разрабатываемых ГОС ВПО 3-го поколения также подчеркивается необходимость приобретения студентами профессиональных умений и навыков и знание средств современных измерительных комплексов, аппаратуры исследований и промышленного оборудования, с помощью которых они достигаются. Определены следующие направления исследований в рамках специализированной учебно-исследовательской лаборатории: Технологии беспроводной связи, Технологии информационной безопасности, Технологий систем передачи данных, Технологии «Интеллектуальный дом». Тогда система может быть описана при помощи дифференциального уравнения второго порядка относительно параметра процесса. Лицевая панель ВП управления и контроля рис. В состав оборудования системы контроля и управления входит станция контроля цементирования СКЦ.

С помощью среды LabVIEW и интерфейсной платы GPIB-USB-B проводится математическое моделирование прохождения сигналов через стробоскопический осциллограф, исследование и апробация методов расширения полосы пропускания. Режим измерения вольт-температурной характеристики. Устанавливаемой мощности оптического излучения активного элемента от предустановленного протекающего тока через п/п переход, происходит смещение временного графика по температурной Шкале на десятые доли градуса. Часто математические задачи, возникающие на основе различных математических моделей явлений бывают одинаковыми.

Высоковольтное питание на модули усилителей мощности подается с импульсного источника питания. Сложность реализации подобных систем управления заключается в нелинейности уравнений, описывающих поведение объектов управления. Для управления процессом исследований создана микропроцессорная система.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................