Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Используемое оборудование и ПО Оборудование: NI Instrument Simulator Программное обеспечение: NI LabVIEW

Используемое оборудование и ПО. При этом изображение Im1 получено с верхней поверхности образца, изображение ImM- с нижней поверхности образца, а Imk1<k<М - изображение, полученное с плоскостью фокусировки внутри слоя образца. Теоретический анализ дифракции гауссова оптического пучка на системе из двух дифракционных решеток // Оптика и спектроскопия, 1987, №2. Отраженная волна, дойдя до мундштука 1, снова отражается. Исследование физиологического воздействия звуков инструмента: а, б. Создание лабораторных установок с удаленным доступом позволяет решить целый комплекс проблем.

При проектировании эхокомпенсатора требуется проводить моделирование его работы с целью определения параметров адаптивного фильтра числа весовых коэффициентов и вида используемого алгоритма, обеспечивающих требуемое значение ERLE. Для удобства работы с архивом измерений создана программа-симулятор, полностью повторяющая интерфейс основной программы.

Обобщенная структурная схема математической модели прохождения сигналов через сверхширокополосный стробоскопический осциллограф Описание решения. Для создания виртуального прибора использовался персональный компьютер на базе процессора Athlon 64, 2800+, 512 Mb ОЗУ, операционная система Windows ХР, программа Lab View 7. Основными компонентами системы лабораторий удаленного доступа РУДН являются: маршрутизатор; главный сервер web-сервер и сервер баз данных; специализированные рабочие станции, к которым непосредственно подключено лабораторное оборудование. Корпус маркировщика выполнен из алюминиевого сплава, позволяющего осуществлять его крепление на относительно слабые манипуляторы и обеспечивает его антикоррозийные свойства в производственных помещениях с повышенной влажностью. По сложности и стоимости объекты исследований и проектирования в учебном процессе могут быть сопоставимы со стандартным оборудованием лабораторных стендов. Описание решения, используемое оборудование и ПО Установка работает под управлением КПК Aser300 через модуль сбора данных USB-6008 National Instruments.

Показатель адиабаты вычисляется по формуле где t-количество степеней свободы молекул газа. Развитием этих идей является более широкое внедрение компьютерных технологий и аппаратных ресурсов последнего поколения в научные исследования и учебный процесс, включая проектирование автоматизированных измерительно-управляющих устройств на основе программно-аппаратных средств SCXI, PXI, LabCard. В том числе: Школьники1 2 курс19 3 курс26 4 курс19 5 курс1 V. В связи с этим, рассматривая динамическое поведение системы, считается, что в ней происходит последовательная смена некоторых промежуточных состояний.

Предусмотрена калибровка применяемых термометров сопротивления независимо по каждому из каналов см. Расчёты произведены при помощи различных математических функций LabVIEW. Использование удаленного звукового контроля может быть эффективно использовано для дистанционного музыкального обучения. Все измеренные и расчетные значения отображаются графически и численно и сохраняются в архиве результатов измерений. Используемое оборудование и ПО. Созданная модель позволяет не только исследовать процессы, происходящие в электроэнергетической системе, а так же проводить работы, связанные, как с обучением студентов, так и с подготовкой специалистов. При моделировании были приняты во внимание физические принципы работы блоков делителей, усилителей, АЦП и т. Возникающие в подобных условиях высокие механические напряжения и градиенты напряжений и деформаций могут сильно влиять на механизмы пластического течения и структуру материала в субмикрообъеме. Используемое оборудование и ПО Проекты инструментов реализованы на языках LabVIEW 7. Рисунок 5 При правильной работе с приборами и манипуляции с переключателями в определенные моменты времени на 2-3 секунды загорается зеленый индикатор, после чего можно продолжать выполнение опыта. Проведенные эксперименты показывают, что метод тепловых шумов позволяет получить намного более четкую картину, чем традиционные мостовые методы рис.

Используемое оборудование и программное обеспечение В соответствии с расчетной схемой измерительного блока построена система автоматизации на базе ЭВМ, структура которой приведена на рис. Режим измерения вольтамперной характеристики. На первой вкладке были реализованы вольтметр и генератор испытательных сигналов, а на второй - структурная схема вольтметра с необходимыми элементами визуализации и управления. Одной из важнейших проблем при проведении исследовательских и опытно-конструкторских работ по созданию перспективных быстродействующих импульсных и цифровых систем является отсутствие регистраторов и средств измерений параметров сверхкоротких импульсов. В целом визуальное восприятие виртуальной лабораторной работы идентично восприятию реальной электроустановки с физическим оборудованием. Показана лицевая панель модуля синтеза диаграмм направленности антенн. Вторая программа, разработанная в среде LabVIEW+DSC 5, обеспечивает взаимодействие с ПЛК через ОРС-сервер. Внедрение и развитие решения Блок гальванической развязки внедрен в лабораторном практикуме на кафедре «Электротехника» Ижевского государственного технического университета в составе различных виртуальных измерительных систем, применяемых в лабораторных практикумах по дисциплинам: «Электрический привод», «Электрооборудование промышленности». В дальнейшем предполагается реализовать возможность модульной разработки тренажеров на базе уже готовых стандартных узлов и элементов с указанием параметров обслуживаемых аппаратов и особенностей реализации технологического процесса объем аппарата, объемы реагентов и их наименования, температурный режим и др. Зависимостью - в области 106-108 Ом, где величина шумового напряжения наиболее чувствительна к величине RL. В калькуляторе применен аналог этой программы на языке MATLAB. При выборе оборудования мы остановились на контроллере CompactRIO, т.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................