Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Используемые и рассчитанные импульсные отклики, а также соответствующие им амплитудно-частотные АЧХ и фазочастотные ФЧХ характеристики отображаются на графиках

А,б, АЧХ и ФЧХ которых определяются соответствующими аналитическими соотношениями 2. Интерфейс Блока «Случайные процессы» представлен на рисунке 5. В анализаторе логических состояний реализованы режимы сбора данных с положительным и отрицательным запуском, сравнения с "эталоном", форматы отображения в виде временных диаграмм, таблиц состояний и ошибок. Интерфейс позволяет выбирать параметры перечисленных радиотехнических цепей. Используемое оборудование и программное обеспечение. Калькулятор акустического импульсного отклика В разработанном калькуляторе акустического импульсного отклика рис.

Лабораторный стенд "Интеллектуальные датчики с электронными таблицами" Разработанный практикум состоит из 3-х лабораторных работ: > Основные свойства интеллектуальных датчиков. Интерфейс блока позволяет задавать вид и параметры этих сигналов. На вкладке меню АЧХ и ФЧХ исследуемого прибора рисунок 2 отображаются полученные графики АЧХ и ФЧХ исследуемого фильтра. Echo cancellation in speech and data transmission // IEEE Journal on Selected Areas in Communications. На рисунке 6 приведены графики АЧХ и ФЧХ при работе АПК в режиме короткого замыкания выхода на вход. ПО этой системы имеет трехуровневую архитектуру, компонентами которой являются: 1 ПО главного сервера; 2 ПО измерительного сервера; 3 ПО удаленного пользователя Distant Lab 1. В калькуляторе визуализируются входной импеданс действительная и мнимая части, импульсный отклик, АЧХ и фазочастотная характеристика ФЧХ функции потерь, а также импульсный отклик, АЧХ и ФЧХ передаточной функции четырехполюсника. Генератор тестовых цифровых последовательностей и анализатор логических состояний позволяют исследовать цифровые устройства в реальном времени на частотах до 10 МГц. Разработанный АПК может быть использован для решения как учебных, так и исследовательских задач. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров 1. А именно: U1= S1/K1 U2=K2S2, где К1,K2 - коэффициенты передачи соответственно каналов вывода и ввода. Калькуляторы импульсных откликов // Материалы 15-й Международной конференции «Информационные средства и технологии». Импульсный отклик: канал связи + эквалайзер Если бы канал связи представлял собой просто линию задержки на время t0, то принимаемый сигнал информационные символы можно было бы легко оценивать различать. Экспериментальная проверка показала, что идентичность двух каналов соблюдается с погрешностью не более 0,1% по АЧХ и не более 10 по ФЧХ в диапазоне частот от 1 Гц до 10 кГц. Авторами предложено решение задачи автоматизированного определения АЧХ и ФЧХ аналоговых фильтров в виде аппаратно-программного комплекса АПК, построенного с применением технологий NI. На рисунке 6 приведены графики АЧХ и ФЧХ при работе АПК в режиме короткого замыкания выхода на вход. Развитие современного информационного общества сегодня во многом определяется уровнем развития и многообразием телекоммуникационных технологий. Автоматизированные учебные практикумы и лаборатории.

Для контроля работоспособности ИЦ реализован триггерный запуск АПК. Как известно, экспериментальные АЧХ и ФЧХ вычисляются на основе сравнения сигналов U1 и U2 на входе и выходе ИО.

Блок «Характеристики сигналов и цепей» Блок "Характеристики сигналов и цепей" позволяет наблюдать осциллограммы и спектры сигналов исследуемых процессов по отдельности и в совмещенном режиме. Вкладка содержит настройку и контроль основных параметров работы АПК: значение амплитуды на входе исследуемого фильтра, значение амплитуды напряжения на выходе исследуемого фильтра, частотный диапазон измерения, шаг изменения частоты, величину внесенной коррекции ФЧХ в градусах и время, затраченное на проведение последнего измерения, а также опцию сохранения результатов в файл. В работе ставится задача перевода лабораторного практикума по курсу «Радиотехнические цепи и сигналы» на современную аппаратную базу и обеспечения возможности дистанционного выполнения лабораторных работ. Далее была исследована сквозная частотная зависимость коэффициента передачи устройств вывода-ввода. Кроме того, программное обеспечение может сравнить измеренные характеристики с расчетными АЧХ и ФЧХ цепей. Для повышения удобства эксплуатации данного прибора некоторые органы управления и индикаторы доступны на всех вкладках меню. Импульсный отклик «громкоговоритель + микрофон» хранится в виде таблицы. С помощью регулятора Выбор диапазона устанавливаются верхняя и нижняя границы анализируемого диапазона частот.

Лицевая панель прибора рисунок 2 содержит следующие вкладки: АЧХ и ФЧХ исследуемого прибора, Нормированная АЧХ, Осциллограммы, Настройки. Гибридная схема Переходы между двух- и четырехпроводными линиями связи выполняются с помощью так называемых гибридных схем - в общем случае простых резистивных мостов рис. В качестве алгоритмов адаптивной фильтрации обычно применяется простейший с вычислительной точки зрения нормализованный алгоритм по критерию наименьшего среднеквадратичного отклонения Normalized Least Mean Squares, NLMS или используются более сложные, но и более эффективные рекурсивные адаптивные алгоритмы по критерию наименьших квадратов Recursive Least Squares, RLS 4. Однако частотная зависимость каналов вывода, ввода и задержка сигнала в них приводит к тому, что частотные зависимости цифровых сигналов S1 и S2 в ПК будут заметно отличаться от аналогичных зависимостей U1 и U2. Данная функция позволяет визуально контролировать амплитудные значения и форму входного и выходного сигналов исследуемого фильтра.

Так как каждая лабораторная работа может содержать до четырех исследуемых схем, то для автоматизации четырех работ необходимо использование четырех каналов ЦАП и до шестнадцати каналов АЦП.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................