Навигация
Поиск
Информация
Контакты
an image
НПП Центральная лаборатория автоматизации измерений
111250 Москва, Энергетическая улица, д.7, офис 311
(495) 134-03-49
E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Двигатель постоянного тока можно с хорошей точностью считать линейной системой

Обратный маятник Целью данной работы является разработка лабораторного стенда, представляющего собой обратный маятник и систему управления им. Поэтому возникает задача косвенной оценки момента АД на основе измерения электрических переменных двигателя напряжение, ток. Двигатель постоянного тока можно с хорошей точностью считать линейной системой. Процедура определения времени выполнения основных задач была запущена на ядре операционной системы реального времени в фоновом режиме. В исходном состоянии инициализации пользователь выбирает режим работы и конечный автомат переходит в состояние, соответствующее этому режиму. Мгновенное напряжение каждой из фаз выводится на график блок «Waveform Graph». Полученная полная модель двигателя постоянного тока далее использовалась для создания прогнозирующей системы управления. Модуля согласования может и не быть в составе ИИС, если сигналы совпадают; но ввиду сложности подбора датчиков в соответствии с данным, условием, подобное встречается редко. Профилометр допускает использование различных лазерных датчиков расстояний, отличающихся диапазоном измерения высот профиля. Использованное оборудование и ПО Оборудование: Персональный компьютер, контроллер CompactRIO, робот ТУР-10 ПО: LabVIEW 8. Затем автомат переходит в состояние представленное временным циклом с высоким приоритетом, где каждый период квантования Юме производится расчет текущего задания и отправка данных на уровень шасси. С использованием этих значений ПД2 - регулятор подбирает необходимую амплитуду и полярность напряжения, подаваемого на двигатель. По сети Ethernet он связывается с центральным контроллером, который представляет собой средний уровень управления.

Стенд для исследования электрических переходных характеристик асинхронных двигателей при пуске 1. Внешний вид стенда Для запуска двигателя используется электронный пускатель на симисторах VD1-VD3. Используемое оборудование и ПО В стенде используется асинхронный двигатель 4ААМ50В2УЗ с аппаратурой управления, устройство сбора данных NI USB 6009 с блок гальванической развязки для измерения токов и напряжений, блок питания. Данный стенд состоит из конструкции маятника рис. Это достигается за счет изменения положения опоры маятника, двигатель поворачивает опору маятника, подводя ее под маятник. МА; относительная погрешность измерения 2% 10Тензорезисторы 1-LY41-6/120Hottinger Baldwin MesstechnikМатериал: фольга на полиамидной подложке, сопротивление 120 Ом, к-фактор 2,07; рабочая температура 23°С, поперечная чувствительность 0,1; максимальное растяжение: 2% -растяжение, 5% - сжатие; 11Датчик силы CWW-200kgfDacellНоминальный диапазон: до 200кгс, выходной сигнал: 1,5мВ/В; нелинейность 0,5%; питание 10В 12Датчик силы UMI-200kgfDacellНоминальный диапазон: до 200кгс, выходной сигнал: 2мВ/В; нелинейность 0,03%; питание 10В Рисунок 4 - Схема информационно-измерительной системы на базе платы АЦП/ЦАП Разновидностью ИИС на базе платы АЦП/ЦАП является схема комплекса сбора информации, представленного на рисунке 5. Лицевая панель программного обеспечения профилометра.

Огибающая среднеквадратичных значений тока каждой фазы выводится на график блок «Waveform chart»1. С помощью двух курсоров оператор имеет возможность измерить как высоту, так и протяженность любых участков полученного профиля, численные значения которых высвечиваются в миллиметрах в окнах "dX=" и "dY=". Контролируемая деталь закрепляется на оптическом столике - ротаторе, обеспечивающем, если это необходимо, с помощью шагового двигателя поворот детали на требуемый угол.

Системы «Тиристорный преобразователь напряжения - асинхронный двигатель» «ТПН-АД» широко используются при построении устройств плавного пуска АД. Модуль host строится на базе структуры конечный автомат. Профилометр имеет следующие характеристики: - погрешность измерения высот профиля - не более 10 мкм; - диапазон высот профиля, в пределах которого возможны измерения с указанной погрешностью, определяется установленным лазерным датчиком и имеет для изображенного на рис. Структура исследовательского стенда При практической реализации САР момента нет необходимости в выдаче управляющего преобразователем сигнала на выбранном такте работы АЦП т. Экспериментальная установка по исследованию механических передач представляет собой модельный электромеханический привод, включающий в себя электродвигатель, ременную цепную передачу, муфту, зубчатый цилиндрический червячный редуктор и нагрузочное устройство колодочный или дисковый тормоз рисунок 1. Однако, несмотря на относительную простоту внутреннего устройства, двигатели постоянного тока подвержены износу и требуют частой диагностики и профилактического обслуживания коллекторно-щеточных узлов.

Внешний вид профилометра На представленном рисунке: 1 - лазерный триангуляционный датчик расстояний, 2 - контролируемая деталь мембрана, 3 - ротатор, 4 - шаговый двигатель ротатора, 5 - транслятор, 6 - шаговый двигатель транслятора, 7 - блок электроники шаговых двигателей, 8 - на мониторе компьютера изображена лицевая панель разработанного программного обеспечения. После того, как временной цикл выполнен нужное число раз, производится отправка сигнала на верхний уровень и автомат снова переходит в состояние инициализации. Куропаткин Теория автоматического управления.

Ротатор жестко закреплен на другом оптическом столике - трансляторе, шаговый двигатель которого обеспечивает линейное перемещение транслятора, и, соответственно, ротатора с закрепленной на нем деталью относительно датчика. Используемый испытательный стенд с реальным двигателем описан в докладе «Система диагностики двигателей постоянного тока». Описание решения В настоящее время в нашей стране сохранилось большое количество манипуляционных устройств, имеющих, как правило, исправную механику и электродвигатель, но управляющая часть которых морально и физически устарела.


Исследования

Стендовые испытания (виброакустика, тензометрия и т.п.)

  1. Автоматизированная система измерения параметров дизельных двигателей типа В-46

  2. Система мониторинга состояния тяговых электродвигателей электровоза на базе устройств National Instruments

  3. Контроль духовых музыкальных инструментов

  4. Лабораторный комплекс по исследованию элементной базы машин

  5. Применение LabVIEW real-time module для моделирования электромагнитных процессов с целью отладки систем управления электрооборудованием на электроподвижном составе (ЭПС)

  6. Создание комплекса по измерению скорости подвижного состава для тренажера машиниста состава

  7. Система автоматизации экспериментальных исследований в гиперзвуковых аэродинамических трубах

  8. Функциональные модули в стандарте Nl SCXI для ультразвуковых контрольно-измерительных систем

  9. Магнитометрический метод в дефектоскопии сварных швов металлоконструкций

  10. Перспективы использования машинного зрения в составе системы управления движением экраноплана

  11. Компьютерные измерительные системы для лабораторных испытаний материалов методом акустической эмиссии

  12. Испытательно-измерительный комплекс аппаратуры для определения тепловых и электрических характеристик и параметров силовых полупроводниковых приборов

  13. Стенд для исследований рабочих процессов ДВС в динамических режимах

Радиоэлектроника и телекоммуникации

  1. LabVIEW в расчетах радиолиний систем передачи данных

  2. Аппаратно-программный комплекс для исследования АЧХ и ФЧХ активных фильтров

  3. Виртуальный лабораторный стенд для исследования параметров двухполюсников резонансным методом

  4. Измерение шумовых параметров операционных усилителей с применением аппаратно-программных средств NATIONAL INSTRUMENTS

  5. Измерительный преобразователь на основе цифровой обработки выборок мгновенных значений

  6. Инструменты для исследования выравнивания электрических каналов

  7. Инструменты для исследования компенсации эхо-сигналов

  8. Использование NI LabVIEW для математического моделирования сверхширокополосного стробоскопического осциллографа и исследования методов расширения его полосы пропускания

  9. Исследовние возможности создания измерителя ВАХ фотоэлементов на базе виртуальных средств измерений

  10. Математическое моделирование генератора сигналов - имитатора джиттера и измерителя параметров джиттера

  11. Моделирование и экспериментальное исследование линейных антенн и антенных решеток в учебной лаборатории средствами LabVIEW

  12. Применение осциллографического модуля с высоким разрешением для создания SPICE- модели импульсного сигнала

  13. Симуляция отклика импульсного радиолокационного сигнала и его FFT анализ в программной среде Lab VIEW 7.1

  14. Автоматизация формирования уравнений состояния для исследования переходных процессов в среде LabVIEW

  15. Блок гальванической развязки для устройства сбора данных NI USB-6009

  16. Разработка автоматизированного стенда для измерения относительного остаточного электросопротивления (RRR) сверхпроводников

  17. Применение среды LabVIEW для построения картины возбуждения комбинационных колебаний в пространстве Ван Дер Поля

  18. Портативная система для определения показателей качества электрической энергии

  19. Использование LabVIEW для управления источником питания PSP 2010 фирмы GW INSTEK

  20. Устройство для снятия вольт-амперных характеристик солнечных модулей на базе USB-6008

Передовые научные технологии: нано-, фемто-, биотехнологии и мехатроника

  1. Автоматизированная установка по измерению временных характеристик реверсивных сред

  2. Автоматизированный лабораторный комплекс на базе LabVIEW для исследования наноструктур

  3. Визуализация моделирования и оптимизации тепловой обработки биопродуктов с применением современных информационных технологий и программных средств

  4. Виртуальный прибор для исследования функциональных возможностей алгоритма полигармонической экстраполяции

  5. Исследование возможности создания экономичного виртуального полярографа на основе платы USB 6008 в среде LabVIEW

  6. Исследование кинетики движения макрочастиц в упорядоченных плазменно-пылевых структурах

  7. Комплекс автоматизированной диагностики крови

  8. Метод прогнозирования свойств дисперсных продуктов при обработке возмущениями давления

  9. Недорогая система управления сверхпроводящим соленоидом с биквадрантным источником тока

  10. Применение технологий NI в курсе экспериментальной физики на примере выдающихся экспериментов: самоорганизованная критичность

  11. Расчет переноса аэрозоля и выпадения осадка в реальном времени

  12. Формирование линейной шкалы цвета модели CIE L*a*b с использованием LabVIEW

  13. Установка для измерения вольтамперных характеристик солнечных элементов и модулей

  14. Применение NI VISION для геометрического анализа в медицинской эндоскопии

  15. Система температурной стабилизации

  16. Управление движением с помощью программно - аппаратного комплекса NI - Motion

  17. Определение параметров всплывающих газовых пузырьков по данным эхолокационного зондирования с применением технологии виртуальных приборов

  18. Система управления асинхронным тиристорным электроприводом

  19. Лазерный профилометр

  20. Применение средств NATIONAL INSTRUMENTS для автоматизации процесса очистки сточных вод в мембранном биореакторе

  21. Разработка автоматизированного стенда для исследования плазменных процессов синтеза нанопорошков

  22. Автоматизированный стенд рентгеновской диагностики плазмы

  23. Высокочувствительные оптоэлектронные дифракционные датчики малых перемещений и колебаний

  24. Установка для измерения диэлектрических свойств сегнетоэлектриков методом тепловых шумов

  25. Исследование кинетики зарождения и развития дефектов в растущем монокристалле карбида кремния на основе акустической эмиссии и лазерной интерферометрии

  26. Лабораторный электрический импедансный томограф на базе платы сбора данных PCI 6052E

  27. Микрозондовая система для характеризации механических свойств материалов в наношкале

  28. Метод траекторий в исследовании металлообрабатывающих станков

Продолжение справочного пособия

>>> 0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................